Display options
Share it on

Stem Cells Int. 2016;2016:4969430. doi: 10.1155/2016/4969430. Epub 2015 Nov 23.

Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells.

Stem cells international

Giacomo Palazzolo, Mattia Quattrocelli, Jaan Toelen, Roberto Dominici, Luigi Anastasia, Guido Tettamenti, Inès Barthelemy, Stephane Blot, Rik Gijsbers, Marco Cassano, Maurilio Sampaolesi

Affiliations

  1. Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 O&N4 Bus 814, 3000 Leuven, Belgium ; Laboratory of Stem Cells for Tissue Engineering, IRCCS, San Donato Hospital, San Donato, Milan, Italy.
  2. Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 O&N4 Bus 814, 3000 Leuven, Belgium.
  3. Organ Systems Development and Regeneration Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 O&N4 Bus 814, 3000 Leuven, Belgium.
  4. Laboratory of Clinical Chemistry, Public Health Corporation of Legnano, Magenta Hospital, 20013 Magenta, Italy.
  5. Laboratory of Stem Cells for Tissue Engineering, IRCCS, San Donato Hospital, San Donato, Milan, Italy ; Department of Biomedical Sciences for Health, University of Milan, Segrate, Milan, Italy.
  6. Laboratory of Stem Cells for Tissue Engineering, IRCCS, San Donato Hospital, San Donato, Milan, Italy.
  7. Laboratoire de Neurobiologie, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France.
  8. Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences and Leuven Viral Vector Core, KU Leuven, Leuven, Belgium.
  9. School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
  10. Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Herestraat 49 O&N4 Bus 814, 3000 Leuven, Belgium ; Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 8, 27100 Pavia, Italy.

PMID: 26681949 PMCID: PMC4670879 DOI: 10.1155/2016/4969430

Abstract

The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.

References

  1. Nature. 2008 Oct 2;455(7213):627-32 - PubMed
  2. Muscle Nerve. 1988 Oct;11(10):1056-64 - PubMed
  3. Curr Top Dev Biol. 2008;84:431-53 - PubMed
  4. J Nutr. 2006 Jul;136(7 Suppl):2058S-2060S - PubMed
  5. Cell Stem Cell. 2014 Mar 6;14(3):370-84 - PubMed
  6. PLoS One. 2013 May 21;8(5):e63577 - PubMed
  7. Eur Heart J. 2004 Nov;25(21):1934-9 - PubMed
  8. Neuromuscul Disord. 1997 Jul;7(5):325-8 - PubMed
  9. J Am Coll Cardiol. 1991 Mar 1;17 (3):812-20 - PubMed
  10. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5588-93 - PubMed
  11. Development. 2014 Nov;141(22):4267-78 - PubMed
  12. Circ Res. 2012 Oct 12;111(9):1147-56 - PubMed
  13. World J Cardiol. 2010 May 26;2(5):107-11 - PubMed
  14. PLoS One. 2014 Feb 26;9(2):e89678 - PubMed
  15. Hum Pathol. 1976 Jul;7(4):375-86 - PubMed
  16. Cell. 2010 Aug 6;142(3):375-86 - PubMed
  17. Circ Res. 2015 Jan 16;116(2):237-44 - PubMed
  18. Cell Transplant. 2012;21(9):1945-67 - PubMed
  19. J Mol Cell Cardiol. 2012 Sep;53(3):323-32 - PubMed
  20. Circ Res. 2012 May 25;110(11):1465-73 - PubMed
  21. Nature. 2011 Jun 29;475(7356):390-3 - PubMed
  22. Cardiology. 2003;99(1):1-19 - PubMed
  23. Annu Rev Pharmacol Toxicol. 2005;45:657-87 - PubMed
  24. Lancet Neurol. 2003 Dec;2(12):731-40 - PubMed
  25. J Thorac Dis. 2013 Oct;5(5):683-97 - PubMed
  26. Am J Pathol. 1989 Oct;135(4):671-8 - PubMed
  27. Int J Cardiol. 2010 Feb 4;138(3):302-5 - PubMed
  28. Nature. 2012 May 31;485(7400):593-8 - PubMed
  29. Nat Protoc. 2013 Jun;8(6):1204-15 - PubMed
  30. Cell. 1987 Dec 24;51(6):987-1000 - PubMed
  31. Am J Cardiovasc Drugs. 2011 Oct 1;11(5):287-94 - PubMed
  32. Nature. 2011 May 11;475(7356):386-9 - PubMed
  33. Nature. 2012 May 13;485(7400):599-604 - PubMed
  34. Trends Cardiovasc Med. 2009 Feb;19(2):50-55 - PubMed
  35. Nature. 2011 Jul 03;476(7359):224-7 - PubMed
  36. Stem Cell Reports. 2013 Aug 22;1(3):235-47 - PubMed

Publication Types