Display options
Share it on

PeerJ. 2015 Nov 19;3:e1429. doi: 10.7717/peerj.1429. eCollection 2015.

Unbiased high-throughput characterization of mussel transcriptomic responses to sublethal concentrations of the biotoxin okadaic acid.

PeerJ

Victoria Suarez-Ulloa, Juan Fernandez-Tajes, Vanessa Aguiar-Pulido, M Veronica Prego-Faraldo, Fernanda Florez-Barros, Alexia Sexto-Iglesias, Josefina Mendez, Jose M Eirin-Lopez

Affiliations

  1. Chromatin Structure and Evolution Group (Chromevol), Department of Biological Sciences, Florida International University , Miami, FL , United States of America.
  2. McCarthy Group, Wellcome Trust Center for Human Genetics, University of Oxford , Oxford , United Kingdom.
  3. Bioinformatics Research Group (BioRG), School of Computing & Information Sciences, Florida International University , Miami, FL , United States of America.
  4. Chromatin Structure and Evolution Group (Chromevol), Department of Biological Sciences, Florida International University , Miami, FL , United States of America ; Xenomar Group, Department of Cellular and Molecular Biology, University of A Coruña , A Coruña , Spain.
  5. Centre for Nephrology, Royal Free Hospital, University College London , London , United Kingdom.
  6. Xenomar Group, Department of Cellular and Molecular Biology, University of A Coruña , A Coruña , Spain.

PMID: 26618092 PMCID: PMC4655091 DOI: 10.7717/peerj.1429

Abstract

Background. Harmful Algal Blooms (HABs) responsible for Diarrhetic Shellfish Poisoning (DSP) represent a major threat for human consumers of shellfish. The biotoxin Okadaic Acid (OA), a well-known phosphatase inhibitor and tumor promoter, is the primary cause of acute DSP intoxications. Although several studies have described the molecular effects of high OA concentrations on sentinel organisms (e.g., bivalve molluscs), the effect of prolonged exposures to low (sublethal) OA concentrations is still unknown. In order to fill this gap, this work combines Next-Generation sequencing and custom-made microarray technologies to develop an unbiased characterization of the transcriptomic response of mussels during early stages of a DSP bloom. Methods. Mussel specimens were exposed to a HAB episode simulating an early stage DSP bloom (200 cells/L of the dinoflagellate Prorocentrum lima for 24 h). The unbiased characterization of the transcriptomic responses triggered by OA was carried out using two complementary methods of cDNA library preparation: normalized and Suppression Subtractive Hybridization (SSH). Libraries were sequenced and read datasets were mapped to Gene Ontology and KEGG databases. A custom-made oligonucleotide microarray was developed based on these data, completing the expression analysis of digestive gland and gill tissues. Results. Our findings show that exposure to sublethal concentrations of OA is enough to induce gene expression modifications in the mussel Mytilus. Transcriptomic analyses revealed an increase in proteasomal activity, molecular transport, cell cycle regulation, energy production and immune activity in mussels. Oppositely, a number of transcripts hypothesized to be responsive to OA (notably the Serine/Threonine phosphatases PP1 and PP2A) failed to show substantial modifications. Both digestive gland and gill tissues responded similarly to OA, although expression modifications were more dramatic in the former, supporting the choice of this tissue for future biomonitoring studies. Discussion. Exposure to OA concentrations within legal limits for safe consumption of shellfish is enough to disrupt important cellular processes in mussels, eliciting sharp transcriptional changes as a result. By combining the study of cDNA libraries and a custom-made OA-specific microarray, our work provides a comprehensive characterization of the OA-specific transcriptome, improving the accuracy of the analysis of expresion profiles compared to single-replicated RNA-seq methods. The combination of our data with related studies helps understanding the molecular mechanisms underlying molecular responses to DSP episodes in marine organisms, providing useful information to develop a new generation of tools for the monitoring of OA pollution.

Keywords: Biomonitoring; Diarrhetic shellfish poisoning; Harmful algal blooms; Marine pollution; Microarray; Okadaic acid; Transcriptomics

References

  1. Bioinformatics. 2006 Aug 15;22(16):2020-7 - PubMed
  2. BMC Res Notes. 2014 Oct 14;7:722 - PubMed
  3. Mar Drugs. 2013 Nov 01;11(11):4370-89 - PubMed
  4. J Toxicol Environ Health A. 2015;78(13-14):814-24 - PubMed
  5. Aquat Toxicol. 2014 Apr;149:65-82 - PubMed
  6. Mol Ecol. 2011 Apr;20(7):1431-49 - PubMed
  7. Ecol Evol. 2013 Sep;3(10):3283-97 - PubMed
  8. Fish Shellfish Immunol. 2007 Jul;23 (1):171-7 - PubMed
  9. Sci Rep. 2015 Sep 29;5:14582 - PubMed
  10. BMC Genomics. 2013;14 Suppl 8:S2 - PubMed
  11. Mar Drugs. 2013 Aug 09;11(8):2829-45 - PubMed
  12. Nucleic Acids Res. 2008 Jun;36(10):3420-35 - PubMed
  13. J AOAC Int. 2012 Jul-Aug;95(4):1097-105 - PubMed
  14. Mar Drugs. 2013 Oct 31;11(11):4328-49 - PubMed
  15. Environ Pollut. 2015 Jan;196:350-7 - PubMed
  16. Trends Immunol. 2004 Oct;25(10):551-61 - PubMed
  17. PLoS One. 2014 May 13;9(5):e97181 - PubMed
  18. Ocean Coast Manag. 2009 Jul 1;52(7):342 - PubMed
  19. Mar Drugs. 2014 Jan 20;12(1):394-461 - PubMed
  20. J Proteomics. 2012 Jul 19;75(14):4346-59 - PubMed
  21. Annu Rev Cell Biol. 1994;10:55-86 - PubMed
  22. Cell Biol Toxicol. 2013 Jun;29(3):189-97 - PubMed
  23. Dev Genes Evol. 2014 Dec;224(4-6):197-207 - PubMed
  24. Aquat Toxicol. 2003 Oct 8;65(1):27-37 - PubMed
  25. Dev Comp Immunol. 2015 Mar;49(1):59-71 - PubMed
  26. Novartis Found Symp. 2002;247:91-101; discussion 101-3, 119-28, 244-52 - PubMed
  27. Fish Shellfish Immunol. 2013 Mar;34(3):939-45 - PubMed
  28. FASEB J. 2001 Jul;15(9):1592-4 - PubMed
  29. PLoS One. 2011 May 05;6(5):e18904 - PubMed
  30. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  31. Mar Biotechnol (NY). 2011 Oct;13(5):857-67 - PubMed
  32. Nucleic Acids Res. 2001 Jan 1;29(1):37-40 - PubMed
  33. J Chromatogr A. 2014 Feb 7;1328:16-25 - PubMed
  34. Nature. 2012 Oct 4;490(7418):49-54 - PubMed
  35. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  36. Mar Drugs. 2013 Mar 12;11(3):830-41 - PubMed
  37. PLoS One. 2015 Mar 13;10(3):e0118839 - PubMed
  38. Arch Toxicol. 2011 Dec;85(12):1541-50 - PubMed
  39. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30 - PubMed
  40. BMC Genomics. 2009 Aug 14;10:377 - PubMed
  41. Environ Monit Assess. 2011 Jun;177(1-4):289-300 - PubMed
  42. Fish Shellfish Immunol. 2015 Nov;47(1):175-81 - PubMed
  43. Mutat Res. 2002 Jan 29;499(1):13-25 - PubMed
  44. J Ind Microbiol Biotechnol. 2003 Jul;30(7):383-406 - PubMed
  45. Toxicon. 2008 Dec 15;52(8):936-43 - PubMed
  46. Anim Genet. 2009 Oct;40(5):663-77 - PubMed
  47. Mar Environ Res. 2012 Oct;81:90-3 - PubMed
  48. Int J Mol Sci. 2015 Jul 06;16(7):15235-50 - PubMed
  49. Nat Genet. 2000 May;25(1):25-9 - PubMed
  50. Methods Mol Biol. 2011;729:85-98 - PubMed
  51. Environ Sci Technol. 2010 Nov 1;44(21):8276-83 - PubMed
  52. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  53. Dev Comp Immunol. 2012 Feb;36(2):390-9 - PubMed

Publication Types