Display options
Share it on

Mol Imaging. 2015 Dec 05;14(12):13-14. doi: 10.2310/7290.2015.00030.

Digital Microfluidics: A New Paradigm for Radiochemistry.

Molecular imaging

Pei Yuin Keng, R Michael van Dam

PMID: 26650206 PMCID: PMC4734895 DOI: 10.2310/7290.2015.00030

Abstract

The emerging technology of digital microfluidics is opening up the possibility of performing radiochemistry at the microliter scale to produce tracers for positron emission tomography (PET) labeled with fluorine-18 or other isotopes. Working at this volume scale not only reduces reagent costs but also improves specific activity (SA) by reducing contamination by the stable isotope. This technology could provide a practical means to routinely prepare high-SA tracers for applications such as neuroimaging and could make it possible to routinely achieve high SA using synthesis strategies such as isotopic exchange. Reagent droplets are controlled electronically, providing high reliability, a compact control system, and flexibility for diverse syntheses with a single-chip design. The compact size may enable the development of a self-shielded synthesizer that does not require a hot cell. This article reviews the progress of this technology and its application to the synthesis of PET tracers.

References

  1. Anal Chem. 2004 Aug 15;76(16):4833-8 - PubMed
  2. Nucl Med Biol. 2005 Oct;32(7):673-8 - PubMed
  3. Appl Radiat Isot. 2006 Mar;64(3):333-6 - PubMed
  4. Science. 2005 Dec 16;310(5755):1793-6 - PubMed
  5. Lab Chip. 2006 Feb;6(2):199-206 - PubMed
  6. Ernst Schering Res Found Workshop. 2007;(62):271-87 - PubMed
  7. Lab Chip. 2007 Feb;7(2):273-80 - PubMed
  8. Eur J Nucl Med Mol Imaging. 2007 Sep;34(9):1406-9 - PubMed
  9. Lab Chip. 2008 Apr;8(4):519-26 - PubMed
  10. Lab Chip. 2008 Dec;8(12):2188-96 - PubMed
  11. Radiol Clin North Am. 2009 Jan;47(1):147-60 - PubMed
  12. Lab Chip. 2009 May 7;9(9):1236-42 - PubMed
  13. Lab Chip. 2009 May 21;9(10):1326-33 - PubMed
  14. Phys Med Biol. 2009 Nov 21;54(22):6757-71 - PubMed
  15. Curr Radiopharm. 2009;2(1):nihpa81093 - PubMed
  16. J Nucl Med. 2010 Feb;51(2):282-7 - PubMed
  17. Appl Radiat Isot. 2010 Sep;68(9):1703-8 - PubMed
  18. Appl Radiat Isot. 2010 Dec;68(12):2279-84 - PubMed
  19. Chemistry. 2011 Jan 10;17(2):460-3 - PubMed
  20. Mol Imaging. 2011 Jun;10(3):168-76, 1-7 - PubMed
  21. Anal Chem. 2011 May 15;83(10):3824-30 - PubMed
  22. Semin Nucl Med. 2011 Jul;41(4):246-64 - PubMed
  23. J Chromatogr A. 2011 Jul 22;1218(29):4714-9 - PubMed
  24. Br J Clin Pharmacol. 2012 Feb;73(2):175-86 - PubMed
  25. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):690-5 - PubMed
  26. Anal Chem. 2012 Feb 21;84(4):1915-23 - PubMed
  27. J Cereb Blood Flow Metab. 2012 Jul;32(7):1426-54 - PubMed
  28. Theranostics. 2012;2(4):374-91 - PubMed
  29. Appl Radiat Isot. 2012 Aug;70(8):1691-7 - PubMed
  30. Lab Chip. 2012 Sep 21;12(18):3331-40 - PubMed
  31. Nucl Med Biol. 2013 Jan;40(1):42-51 - PubMed
  32. Lab Chip. 2013 Jan 7;13(1):136-45 - PubMed
  33. Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2303-7 - PubMed
  34. J Nucl Med Technol. 2013 Mar;41(1):32-4 - PubMed
  35. Nucl Med Biol. 2013 Apr;40(3):314-20 - PubMed
  36. J Chromatogr A. 2013 Mar 8;1280:117-21 - PubMed
  37. Lab Chip. 2013 Jun 21;13(12):2328-36 - PubMed
  38. Lab Chip. 2013 Jul 21;13(14):2785-95 - PubMed
  39. Nucl Med Biol. 2013 Aug;40(6):776-87 - PubMed
  40. Molecules. 2013 Jul 05;18(7):7930-56 - PubMed
  41. Analyst. 2013 Oct 7;138(19):5654-64 - PubMed
  42. Anal Chem. 2013 Oct 15;85(20):9638-46 - PubMed
  43. Chem Commun (Camb). 2014 Feb 7;50(10):1192-4 - PubMed
  44. Lab Chip. 2014 Mar 7;14(5):902-10 - PubMed
  45. J Nucl Med. 2014 Feb;55(2):321-8 - PubMed
  46. J Nucl Med. 2014 Feb;55(2):181-2 - PubMed
  47. Lab Chip. 2014 Jul 21;14(14):2556-64 - PubMed
  48. J Nucl Med Technol. 2014 Sep;42(3):203-10 - PubMed
  49. Mol Imaging. 2014;13:null - PubMed
  50. ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12923-9 - PubMed
  51. Appl Radiat Isot. 2018 Nov;141:138-148 - PubMed

Publication Types

Grant support