Display options
Share it on

Biomed Opt Express. 2015 Nov 19;6(12):4981-91. doi: 10.1364/BOE.6.004981. eCollection 2015 Dec 01.

Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

Biomedical optics express

Kelly E Michaelsen, Venkataramanan Krishnaswamy, Linxi Shi, Srinivasan Vedantham, Steven P Poplack, Andrew Karellas, Brian W Pogue, Keith D Paulsen

Affiliations

  1. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
  2. Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA ; Currently at School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  3. Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
  4. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA ; Currently at Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

PMID: 26713210 PMCID: PMC4679270 DOI: 10.1364/BOE.6.004981

Abstract

Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results.

Keywords: (120.3890) Medical optics instrumentation; (170.0110) Imaging systems; (170.3830) Mammography

References

  1. Neoplasia. 2000 Jan-Apr;2(1-2):26-40 - PubMed
  2. Neoplasia. 2002 Jul-Aug;4(4):347-54 - PubMed
  3. Opt Lett. 2003 Mar 1;28(5):337-9 - PubMed
  4. J Clin Oncol. 2005 Mar 10;23(8):1782-90 - PubMed
  5. Acad Radiol. 2005 Aug;12(8):934-47 - PubMed
  6. Technol Cancer Res Treat. 2005 Oct;4(5):513-26 - PubMed
  7. J Biomed Opt. 2006 Jul-Aug;11(4):044005 - PubMed
  8. Radiology. 2007 May;243(2):350-9 - PubMed
  9. Appl Opt. 2001 Dec 1;40(34):6367-80 - PubMed
  10. AJR Am J Roentgenol. 2010 Feb;194(2):362-9 - PubMed
  11. Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732 - PubMed
  12. Radiol Clin North Am. 2010 Sep;48(5):917-29 - PubMed
  13. Radiology. 2011 Jan;258(1):89-97 - PubMed
  14. Radiology. 2011 May;259(2):365-74 - PubMed
  15. J Biomed Opt. 2011 Jun;16(6):066001 - PubMed
  16. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6188-91 - PubMed
  17. Biomed Opt Express. 2012 May 1;3(5):966-71 - PubMed
  18. Biomed Opt Express. 2012 Sep 1;3(9):2078-86 - PubMed
  19. Opt Express. 2012 Aug 13;20(17):19125-36 - PubMed
  20. J Digit Imaging. 2013 Aug;26(4):731-9 - PubMed
  21. Lancet Oncol. 2013 Jun;14(7):583-9 - PubMed
  22. Radiol Med. 2013 Oct;118(7):1119-36 - PubMed
  23. J Biomed Opt. 2013 Aug;18(8):86007 - PubMed
  24. Clin Radiol. 2013 Dec;68(12):1254-9 - PubMed
  25. Biomed Phys Eng Express. 2015;1(4): - PubMed

Publication Types

Grant support