Display options
Share it on

J Am Soc Mass Spectrom. 2016 Apr;27(4):578-84. doi: 10.1007/s13361-015-1323-7. Epub 2016 Jan 07.

Compatibility of Spatially Coded Apertures with a Miniature Mattauch-Herzog Mass Spectrograph.

Journal of the American Society for Mass Spectrometry

Zachary E Russell, Shane T DiDona, Jason J Amsden, Charles B Parker, Gottfried Kibelka, Michael E Gehm, Jeffrey T Glass

Affiliations

  1. Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
  2. CMS Field Products, OI Analytical, a Xylem brand, College Station, TX, 77842-9010, USA.
  3. Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA. [email protected].

PMID: 26744293 DOI: 10.1007/s13361-015-1323-7

Abstract

In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass resolution Chen et al. (J. Am. Soc. Mass Spectrom. 26, 1633-1640, 2015), Russell et al. (J. Am. Soc. Mass Spectrom. 26, 248-256, 2015). In this work, we simulate theoretical compatibility and demonstrate preliminary experimental compatibility of the Mattauch-Herzog mass spectrograph geometry with spatial coding. For the simulation-based theoretical assessment, COMSOL Multiphysics finite element solvers were used to simulate electric and magnetic fields, and a custom particle tracing routine was written in C# that allowed for calculations of more than 15 million particle trajectory time steps per second. Preliminary experimental results demonstrating compatibility of spatial coding with the Mattauch-Herzog geometry were obtained using a commercial miniature mass spectrograph from OI Analytical/Xylem.

Keywords: Charged particle optics; Coded aperture; Magnetic Sector; Mattauch-Herzog; Miniature mass spectrometer

References

  1. J Am Soc Mass Spectrom. 2015 Feb;26(2):248-56 - PubMed
  2. Analyst. 2014 Oct 7;139(19):4785-9 - PubMed
  3. J Am Soc Mass Spectrom. 2012 Feb;23(2):418-24 - PubMed
  4. Biol Mass Spectrom. 1994 Nov;23(11):665-74 - PubMed
  5. Mass Spectrom Rev. 1996;15(4):241-59 - PubMed
  6. Chem Rev. 2001 Feb;101(2):571-606 - PubMed
  7. J Am Soc Mass Spectrom. 2001 Jun;12(6):619-32 - PubMed
  8. J Am Soc Mass Spectrom. 2015 Sep;26(9):1633-40 - PubMed
  9. Chem Commun (Camb). 2005 Apr 21;(15):1950-2 - PubMed
  10. J Am Soc Mass Spectrom. 2008 Oct;19(10):1403-10 - PubMed
  11. J Opt Soc Am. 1949 Jun;39(6):437-44 - PubMed
  12. J Am Soc Mass Spectrom. 2015 Feb;26(2):212-23 - PubMed
  13. J Mass Spectrom. 2000 Jun;35(6):659-71 - PubMed
  14. Anal Chem. 2014 Aug 5;86(15):7788-97 - PubMed
  15. Clin Chem. 2003 Jul;49(7):1227-8; author reply 1228-9 - PubMed
  16. J Am Soc Mass Spectrom. 2011 Apr;22(4):612-23 - PubMed
  17. Annu Rev Anal Chem (Palo Alto Calif). 2011;4:1-22 - PubMed

Publication Types