Display options
Share it on

Sci Rep. 2015 Dec 11;5:17747. doi: 10.1038/srep17747.

Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling.

Scientific reports

Chao Jin, Tomasz Glawdel, Carolyn L Ren, Monica B Emelko

Affiliations

  1. Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada.
  2. Xagenic Inc., 55 York Street, Suite 1000, Toronto, Ontario, M5J 1R7, Canada.
  3. Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada.

PMID: 26658159 PMCID: PMC4675987 DOI: 10.1038/srep17747

Abstract

Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or "sag effect" was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

References

  1. Vet Parasitol. 2004 Dec 9;126(1-2):219-34 - PubMed
  2. Environ Sci Technol. 2009 Nov 15;43(22):8573-9 - PubMed
  3. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14919-24 - PubMed
  4. Langmuir. 2011 Apr 19;27(8):4603-12 - PubMed
  5. J Biomed Mater Res A. 2009 Feb;88(2):454-63 - PubMed
  6. Phys Rev Lett. 2010 Jul 2;105(1):016001 - PubMed
  7. Langmuir. 2012 Jan 10;28(1):438-52 - PubMed
  8. Langmuir. 2010 Feb 16;26(4):2528-37 - PubMed
  9. Water Res. 2008 Oct;42(16):4368-78 - PubMed
  10. Biotechnol Bioeng. 2001 Apr 20;73(2):111-24 - PubMed
  11. Environ Sci Technol. 2011 May 1;45(9):3831-2 - PubMed
  12. Appl Environ Microbiol. 1999 Oct;65(10):4543-8 - PubMed
  13. Langmuir. 2010 Apr 6;26(7):4743-52 - PubMed
  14. Langmuir. 2005 Dec 6;21(25):11710-21 - PubMed
  15. Adv Colloid Interface Sci. 2014 Aug;210:21-38 - PubMed
  16. Water Res. 2010 Feb;44(4):1235-45 - PubMed
  17. J Colloid Interface Sci. 1997 Dec 15;196(2):177-190 - PubMed
  18. Phys Rev Lett. 2002 Mar 11;88(10):106102 - PubMed
  19. Langmuir. 2005 Mar 15;21(6):2173-84 - PubMed
  20. J Colloid Interface Sci. 2006 Jun 1;298(1):50-8 - PubMed
  21. Langmuir. 2009 May 5;25(9):4907-18 - PubMed
  22. Adv Colloid Interface Sci. 2012 Dec 1;185-186:34-76 - PubMed
  23. Langmuir. 2012 Apr 24;28(16):6606-17 - PubMed
  24. Langmuir. 2010 Aug 3;26(15):12605-13 - PubMed
  25. Ultramicroscopy. 2007 Aug;107(8):617-25 - PubMed
  26. Environ Sci Technol. 2015 Jul 7;49(13):7879-88 - PubMed
  27. Environ Sci Technol. 2002 Jan 15;36(2):184-9 - PubMed
  28. J Phys Condens Matter. 2011 May 11;23(18):184104 - PubMed

Publication Types