Display options
Share it on

J Clin Exp Hepatol. 2015 Sep;5(3):190-8. doi: 10.1016/j.jceh.2015.02.005. Epub 2015 Apr 28.

Remogliflozin Etabonate Improves Fatty Liver Disease in Diet-Induced Obese Male Mice.

Journal of clinical and experimental hepatology

Shigeru Nakano, Kenji Katsuno, Masayuki Isaji, Tatsuya Nagasawa, Benjamin Buehrer, Susan Walker, William O Wilkison, Bentley Cheatham

Affiliations

  1. Discovery Research R&D, Kissei Pharmaceutical Co. Ltd., Nagano 399-8304, Japan.
  2. Research and Development Division, Kissei Pharmaceutical Co. Ltd., Nagano 399-8304, Japan.
  3. Toxicology Research Laboratory, Kissei Pharmaceutical Co. Ltd., Nagano 399-8305, Japan.
  4. ZenBio, Research Triangle Park, NC 27709, USA.
  5. Apex Biostatistics, New Hill, NC 27562, USA.
  6. Islet Sciences, Raleigh, NC 27615, USA.
  7. BHV Pharma, RTP, NC 27709, USA.

PMID: 26628836 PMCID: PMC4632078 DOI: 10.1016/j.jceh.2015.02.005

Abstract

BACKGROUND: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH) are serious conditions and are being diagnosed at an increased rate. The etiology of these hepatic disorders is not clear but involves insulin resistance and oxidative stress. Remogliflozin etabonate (Remo) is an inhibitor of the sodium glucose-dependent renal transporter 2 (SGLT2), and improves insulin sensitivity in type 2 diabetics. In the current study, we examined the effects of Remo in a diet-induced obese mouse model of NAFLD.

METHODS: After 11-weeks on High-Fat-Diet 32 (HFD32), C57BL/6J mice were obese and displayed characteristics consistent with NAFLD. Cohorts of obese animals were continued on HFD32 for an additional 4-week treatment period with or without Remo.

RESULTS: Treatment with Remo for 4 weeks markedly lowered both plasma alanine aminotransferase (76%) and aspartate aminotransferase (48%), and reduced both liver weight and hepatic triglyceride content by 42% and 40%, respectively. Remo also reduced hepatic mRNA content for tumor necrosis factor (TNF)-α (69%), and monocyte chemoattractant protein (MCP)-1 (69%). The diet-induced increase in thiobarbituric acid-reactive substances, a marker of oxidative stress, was reduced following treatment with Remo, as measured in both liver homogenates (22%) and serum (37%). Finally, the oxygen radical absorbance capacity (ORAC) in three different SGLT2 inhibitors was determined: remogliflozin, canagliflozin and dapagliflozin. Only remogliflozin had any significant ORAC activity.

CONCLUSIONS: Remo significantly improved markers associated with NAFLD in this animal model, and may be an effective compound for the treatment of NASH and NAFLD due to its insulin-sensitizing and antioxidant properties.

Keywords: AAPH, 2,2′-azobis-2-methyl-propanimidamide dihydrochloride; ALT, Alanine aminotransferase; AST, aspartate aminotransferase; DIO, Diet-induced obesity; ER, Endoplasmic reticulum; FFA, Free fatty acids; FXR, Farnesoid X receptor; HFD32, High fat diet 32; MCP-1, Monocyte chemoattractant protein-1; NAFLD; NAFLD, Nonalcoholic fatty liver disease; NASH; NASH, Nonalcoholic steatohepatitis; ORAC, Oxygen radical absorbance capacity; ROS, Reactive oxygen species; Remo, Remogliflozin etabonate; SGLT2; SGLT2, sodium glucose-dependent renal transporter 2; TBARS, Thiobarbituric acid-reactive substances; TG, Triglyceride; TNF-α, Tumor necrosis factor alpha; Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; hepatic steatosis; obesity

References

  1. Gastroenterology. 2013 Sep;145(3):574-82.e1 - PubMed
  2. Drug Discov Today. 2007 Sep;12(17-18):740-7 - PubMed
  3. J Biol Chem. 2008 Jul 18;283(29):20015-26 - PubMed
  4. Nat Rev Drug Discov. 2010 Jul;9(7):551-9 - PubMed
  5. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2234-9 - PubMed
  6. Eur J Pharmacol. 2009 May 1;609(1-3):148-54 - PubMed
  7. Int J Mol Med. 2008 Apr;21(4):507-11 - PubMed
  8. J Pharm Pharmacol. 2014 Jul;66(7):975-87 - PubMed
  9. Hepatol Res. 2011 Jul;41(7):670-4 - PubMed
  10. Curr Opin Gastroenterol. 2011 May;27(3):285-8 - PubMed
  11. Eur Rev Med Pharmacol Sci. 2005 Sep-Oct;9(5):299-304 - PubMed
  12. J Pharmacol Exp Ther. 2008 Oct;327(1):268-76 - PubMed
  13. Kidney Int Suppl. 2011 Mar;(120):S14-9 - PubMed
  14. J Lipid Res. 2006 Dec;47(12):2726-37 - PubMed
  15. J Clin Pharmacol. 2012 Apr;52(4):457-63 - PubMed
  16. Trends Mol Med. 2006 Dec;12(12):555-8 - PubMed
  17. Liver Int. 2007 Jun;27(5):708-15 - PubMed
  18. J Gastroenterol Hepatol. 2009 Feb;24(2):243-7 - PubMed
  19. Biochimie. 2006 Mar-Apr;88(3-4):309-18 - PubMed
  20. J Clin Invest. 2006 Jun;116(6):1494-505 - PubMed
  21. Am J Physiol Gastrointest Liver Physiol. 2012 Jun 1;302(11):G1310-21 - PubMed
  22. BMC Pharmacol Toxicol. 2013 May 13;14:26 - PubMed
  23. J Pharmacol Exp Ther. 2007 Jan;320(1):323-30 - PubMed
  24. Diabetes. 2008 Aug;57(8):2037-45 - PubMed
  25. Diabetes Obes Metab. 2015 Jan;17(1):94-7 - PubMed
  26. Int J Obes (Lond). 2008 Dec;32 Suppl 7:S52-4 - PubMed
  27. Science. 2004 Oct 15;306(5695):457-61 - PubMed
  28. Eur J Pharmacol. 2013 Sep 5;715(1-3):246-55 - PubMed
  29. Eur J Pharmacol. 2006 Apr 24;536(1-2):182-91 - PubMed
  30. Diabetes Obes Metab. 2015 Jan;17(1):98-101 - PubMed
  31. Diabetes. 2005 Dec;54 Suppl 2:S73-8 - PubMed
  32. Trends Immunol. 2004 Jan;25(1):4-7 - PubMed
  33. Diabetes Obes Metab. 2012 Jan;14(1):15-22 - PubMed
  34. J Biol Chem. 1957 May;226(1):497-509 - PubMed
  35. Diabetes Care. 2004 Aug;27(8):2057-66 - PubMed
  36. Cell Metab. 2009 Jul;10(1):9-12 - PubMed
  37. Diabetes Care. 2012 Nov;35(11):2198-200 - PubMed
  38. BMC Pharmacol Toxicol. 2013 Apr 30;14:25 - PubMed
  39. Curr Opin Investig Drugs. 2007 Apr;8(4):285-92 - PubMed
  40. J Agric Food Chem. 2005 Mar 23;53(6):1841-56 - PubMed
  41. Eur J Pharmacol. 2009 Sep 15;618(1-3):98-104 - PubMed
  42. Hepatology. 2008 Jun;47(6):1936-46 - PubMed
  43. Cell Metab. 2009 Mar;9(3):252-64 - PubMed

Publication Types