Display options
Share it on

Int J Clin Exp Med. 2015 Sep 15;8(9):14906-15. eCollection 2015.

The effects of self-assembling peptide RADA16 hydrogel on malignant phenotype of human hepatocellular carcinoma cell.

International journal of clinical and experimental medicine

Hong Song, Yun-Zhu Han, Guo-Hui Cai, Fu-Shan Tang, Ze-Hong Yang, Di-Shu Ao, An Zhou

Affiliations

  1. College of Basic Medicine, Zunyi Medical University No. 201 Dalian Road, Huichuan District, Zunyi 563003, China.
  2. Biomolecular Medicine Lab, West China School of Preclinical Medicine and Forensic Medicine, Sichuan University Chengdu, China.

PMID: 26628972 PMCID: PMC4658861

Abstract

The aim of this study will provide a self-assembling peptide (RADA16-I) -derived hydrogel as a tool for investigation the malignant phenotype of human hepatocellular carcinoma cell. Characteristic analysis indicated that the peptide consists of a well-defined secondary structure and self-assembly property. Our results showed that these cells cultured in RADA16-I hydrogels showed a spindle-shaped phenotype with irregular and radial nuclei. Immunohistochemical results showed that the expression of fibronectin in hepatocellular carcinoma cells is positive cultured in RADA16-I hydrogels, and the expression levels of laminin are weakly positive. DNA contents cultured in RADA16-I hydrogel gradually increased up to Day 9. The expression levels of VEGFA, EGF and FGF2 in three hydrogels showed no statistically significant differences (P > 0.05), and the expression levels of IGF-1 in RADA16-I and collagen-I were significantly lower than those of in the Matrigel hydrogel (P ≤ 0.05). These findings suggested that the RADA16-I will help to provide a better physiological substrate for hepatocellular carcinoma cell culture, may serve as an ideal model for cancer biology research of tumorigenesis, growth, local invasion, and metastasis.

Keywords: Self-assembling peptide; hepatocellular carcinoma cell; hydrogel; malignant phenotype; three-dimensional culture

References

  1. Macromol Biosci. 2010 Oct 8;10(10):1164-70 - PubMed
  2. J Cell Commun Signal. 2011 Aug;5(3):239-48 - PubMed
  3. Physiology (Bethesda). 2010 Apr;25(2):85-101 - PubMed
  4. J Cell Biol. 2012 Feb 20;196(4):395-406 - PubMed
  5. Chem Soc Rev. 2009 Apr;38(4):1139-51 - PubMed
  6. Adv Drug Deliv Rev. 2014 Dec 15;79-80:3-18 - PubMed
  7. Dis Model Mech. 2011 Mar;4(2):165-78 - PubMed
  8. Cytotechnology. 2007 Jul;54(3):135-43 - PubMed
  9. Prog Biophys Mol Biol. 2011 Aug;106(2):353-79 - PubMed
  10. Macromol Biosci. 2010 Jan 11;10(1):33-9 - PubMed
  11. Biomaterials. 2011 Nov;32(31):7905-12 - PubMed
  12. Adv Drug Deliv Rev. 2014 Dec 15;79-80:19-29 - PubMed
  13. Proteomics. 2010 May;10(9):1886-90 - PubMed
  14. Biomed Microdevices. 2007 Feb;9(1):25-34 - PubMed
  15. Curr Pharm Biotechnol. 2011 Aug;12(8):1089-100 - PubMed
  16. Macromol Biosci. 2007 Jan 5;7(1):13-22 - PubMed
  17. Int J Cancer. 2006 Mar 15;118(6):1331-9 - PubMed
  18. Cancer Sci. 2006 Feb;97(2):91-8 - PubMed
  19. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8414-9 - PubMed
  20. Br J Pharmacol. 2006 Feb;147 Suppl 2:S144-52 - PubMed
  21. Macromol Biosci. 2009 May 13;9(5):437-43 - PubMed
  22. Biotechnol Bioeng. 2009 Jul 1;103(4):655-63 - PubMed
  23. Acta Biomater. 2013 Feb;9(2):5162-9 - PubMed
  24. Science. 2009 Nov 27;326(5957):1216-9 - PubMed

Publication Types