Display options
Share it on

Sci Rep. 2015 Dec 22;5:18693. doi: 10.1038/srep18693.

Topological constraints on network control profiles.

Scientific reports

Colin Campbell, Justin Ruths, Derek Ruths, Katriona Shea, RĂ©ka Albert

Affiliations

  1. Department of Physics, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802.
  2. Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802.
  3. Department of Physics, Washington College, 300 Washington Avenue, Chestertown, MD 21620.
  4. Engineering Systems and Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372.
  5. Department of Computer Science, McGill University, McConnell Engineering Bldg. Room 318, 3480 University, Montreal, Qc, H3A 0E9, Canada.

PMID: 26691951 PMCID: PMC4686937 DOI: 10.1038/srep18693

Abstract

Network models are designed to capture properties of empirical networks and thereby provide insight into the processes that underlie the formation of complex systems. As new information concerning network structure becomes available, it becomes possible to design models that more fully capture the properties of empirical networks. A recent advance in our understanding of network structure is the control profile, which summarizes the structural controllability of a network in terms of source nodes, external dilations, and internal dilations. Here, we consider the topological properties-and their formation mechanisms-that constrain the control profile. We consider five representative empirical categories of internal-dilation dominated networks, and show that the number of source and sink nodes, the form of the in- and out-degree distributions, and local complexity (e.g., cycles) shape the control profile. We evaluate network models that are sufficient to produce realistic control profiles, and conclude that holistic network models should similarly consider these properties.

References

  1. Nature. 2000 Mar 9;404(6774):180-3 - PubMed
  2. Science. 2014 Oct 31;346(6209):561 - PubMed
  3. Nat Commun. 2013;4:1942 - PubMed
  4. Phys Rev Lett. 2005 Jun 3;94(21):218701 - PubMed
  5. Science. 1999 Oct 15;286(5439):509-12 - PubMed
  6. Nature. 2005 Jun 9;435(7043):814-8 - PubMed
  7. Nat Commun. 2013;4:2002 - PubMed
  8. Trends Ecol Evol. 2012 Jan;27(1):40-6 - PubMed
  9. PLoS One. 2011;6(5):e19779 - PubMed
  10. Science. 2014 Mar 21;343(6177):1373-6 - PubMed
  11. Nat Commun. 2014 Jun 11;5:4114 - PubMed
  12. Nature. 2005 Feb 24;433(7028):895-900 - PubMed
  13. Nature. 2006 Jul 20;442(7100):259-64 - PubMed
  14. Phys Rev Lett. 2001 Jun 4;86(23):5401-4 - PubMed
  15. N Engl J Med. 2008 May 22;358(21):2249-58 - PubMed
  16. Science. 2014 Oct 31;346(6209):561 - PubMed
  17. Ann N Y Acad Sci. 2011 Apr;1224:109-25 - PubMed
  18. Sci Rep. 2015 Feb 12;5:8422 - PubMed
  19. PLoS One. 2014;9(1):e85777 - PubMed
  20. Nat Commun. 2013;4:2447 - PubMed
  21. Nature. 2011 May 12;473(7346):167-73 - PubMed
  22. Cancer Res. 2014 Nov 1;74(21):5963-77 - PubMed
  23. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11149-52 - PubMed
  24. Nature. 2000 Jul 27;406(6794):378-82 - PubMed
  25. Sci Rep. 2013;3:1067 - PubMed
  26. Phys Rev Lett. 2004 Aug 27;93(9):098701 - PubMed
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026118 - PubMed
  28. Phys Rev Lett. 2014 Aug 15;113(7):078701 - PubMed
  29. J Theor Biol. 2013 Oct 21;335:130-46 - PubMed

Publication Types