Display options
Share it on

Curr Opin Insect Sci. 2016 Feb 01;13:1-6. doi: 10.1016/j.cois.2015.09.011.

The right tools for the job: Regulating polyphenic morph development in insects.

Current opinion in insect science

Jennifer A Brisson, Gregory K Davis

Affiliations

  1. Department of Biology, Box 270211, University of Rochester, Rochester, NY 14627, United States. Electronic address: [email protected].
  2. Department of Biology, Bryn Mawr College, 101 N. Merion Avenue, Bryn Mawr, PA 19010, United States.

PMID: 26693142 PMCID: PMC4672386 DOI: 10.1016/j.cois.2015.09.011

Abstract

Polyphenism is a form of developmental plasticity in which organisms respond to environmental cues by producing adaptive, discrete, alternative phenotypes known as morphs. The phenomenon is common and important as both a form of adaptation and a source of variation for natural selection. Understanding the evolution of polyphenism will require understanding the proximate factors that regulate alternative morph production. Renewed interest and technological advances have fueled multiple approaches to the latter, including hormone manipulation studies, targeted transcriptomic studies, and epigenetic profiling. We review these studies and suggest that integration of multilayered approaches will be necessary to understand the complex mechanisms involved in regulating alternative morphologies.

References

  1. Trends Genet. 2011 Apr;27(4):127-31 - PubMed
  2. J Exp Zool A Ecol Genet Physiol. 2012 Mar;317(3):194-203 - PubMed
  3. PLoS Genet. 2014 Feb 27;10(2):e1004206 - PubMed
  4. Genome Res. 2013 Mar;23(3):486-96 - PubMed
  5. PLoS One. 2014 Jan 08;9(1):e82129 - PubMed
  6. Genome Biol Evol. 2010;2:719-28 - PubMed
  7. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20526-31 - PubMed
  8. PLoS Genet. 2013;9(10):e1003872 - PubMed
  9. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12750-5 - PubMed
  10. Science. 2012 Aug 17;337(6096):860-4 - PubMed
  11. J Exp Biol. 2013 Apr 15;216(Pt 8):1423-9 - PubMed
  12. Nature. 2015 Mar 26;519(7544):464-7 - PubMed
  13. Curr Biol. 2012 Oct 9;22(19):1755-64 - PubMed
  14. BMC Genomics. 2012 Sep 15;13:480 - PubMed
  15. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11206-11 - PubMed
  16. Nature. 2007 May 24;447(7143):407-12 - PubMed
  17. Insect Mol Biol. 2011 Oct;20(5):553-65 - PubMed
  18. Evol Dev. 2007 Sep-Oct;9(5):499-513 - PubMed
  19. PLoS Biol. 2010 Nov 02;8(11):e1000506 - PubMed
  20. Genes Dev. 2002 Jan 1;16(1):6-21 - PubMed
  21. Annu Rev Entomol. 2015 Jan 7;60:453-72 - PubMed
  22. Mol Ecol. 2015 Feb;24(4):851-62 - PubMed
  23. Curr Biol. 2011 Sep 27;21(18):R738-49 - PubMed
  24. BMC Genomics. 2012 Feb 15;13:76 - PubMed
  25. Mol Ecol. 2014 Dec;23(24):6123-34 - PubMed
  26. PLoS One. 2011;6(6):e21139 - PubMed
  27. J Insect Physiol. 1999 Jan;45(1):45-53 - PubMed
  28. Annu Rev Entomol. 2014;59:225-44 - PubMed
  29. J Insect Physiol. 2012 Dec;58(12):1517-24 - PubMed
  30. Science. 2010 Oct 29;330(6004):612-6 - PubMed
  31. Nat Commun. 2015 Mar 11;6:6513 - PubMed
  32. BMC Genomics. 2009 Oct 30;10:504 - PubMed
  33. PLoS Genet. 2014 Jan;10(1):e1004098 - PubMed
  34. Nat Commun. 2014;5:2957 - PubMed
  35. J Exp Biol. 2015 Jan 1;218(Pt 1):88-99 - PubMed
  36. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3882-7 - PubMed
  37. J Insect Physiol. 1998 May;44(5-6):365-377 - PubMed
  38. Nucleic Acids Res. 2013 Mar 1;41(5):2918-31 - PubMed
  39. Science. 2012 Jan 6;335(6064):79-82 - PubMed
  40. Insect Mol Biol. 2010 Mar;19 Suppl 2:215-28 - PubMed
  41. J Insect Physiol. 2001 Sep;47(9):1045-1054 - PubMed
  42. Science. 2008 Mar 28;319(5871):1827-30 - PubMed
  43. Science. 2011 Feb 4;331(6017):555-61 - PubMed
  44. EMBO Rep. 2013 Jun;14(6):561-7 - PubMed
  45. Am Nat. 2014 Sep;184(3):E79-92 - PubMed

Publication Types

Grant support