Display options
Share it on

Chemistry. 2016 Mar 07;22(11):3764-74. doi: 10.1002/chem.201503946. Epub 2015 Dec 10.

Incorporation of Cobalt-Cyclen Complexes into Templated Nanogels Results in Enhanced Activity.

Chemistry (Weinheim an der Bergstrasse, Germany)

Ana Rita Jorge, Mariya Chernobryva, Stephen E J Rigby, Michael Watkinson, Marina Resmini

Affiliations

  1. Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
  2. Faculty of Life Sciences, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
  3. Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected].
  4. Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected].

PMID: 26661923 PMCID: PMC4797703 DOI: 10.1002/chem.201503946

Abstract

Recent advances in nanomaterials have identified nanogels as an excellent matrix for novel biomimetic catalysts using the molecular imprinting approach. Polymerisable Co-cyclen complexes with phosphonate and carbonate templates have been prepared, fully characterised and used to obtain nanogels that show high activity and turnover with low catalytic load, compared to the free complex, in the hydrolysis of 4-nitrophenyl phosphate, a nerve agent simulant. This work demonstrates that the chemical structure of the template has an impact on the coordination geometry and oxidation state of the metal centre in the polymerisable complex resulting in very significant changes in the catalytic properties of the polymeric matrix. Both pseudo-octahedral cobalt(III) and trigonal-bipyramidal cobalt(II) structures have been used for the synthesis of imprinted nanogels, and the catalytic data demonstrate that: i) the imprinted nanogels can be used in 15 % load and show turnover; ii) the structural differences in the polymeric matrices resulting from the imprinting approach with different templates are responsible for the molecular recognition capabilities and the catalytic activity. Nanogel P1, imprinted with the carbonate template, shows >50 % higher catalytic activity than P2 imprinted with the phosphonate.

© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: cyclen; enzyme mimics; molecular imprinting; nanogels; phosphatase

References

  1. Anal Bioanal Chem. 2012 Apr;402(10):3021-6 - PubMed
  2. Chem Commun (Camb). 2005 May 28;(20):2540-8 - PubMed
  3. Chemistry. 2016 Mar 7;22(11):3764-74 - PubMed
  4. Curr Opin Chem Biol. 2000 Dec;4(6):710-4 - PubMed
  5. J Am Chem Soc. 1967 Oct 11;89(21):5491-2 - PubMed
  6. Chemistry. 2008;14(23):7059-65 - PubMed
  7. Chem Sci. 2014 Sep 28;5(9):3528-3535 - PubMed
  8. Chem Commun (Camb). 2012 Jun 7;48(45):5545-59 - PubMed
  9. Chemistry. 2011 Sep 19;17(39):11052-9 - PubMed
  10. Org Biomol Chem. 2013 Jun 28;11(24):3936-42 - PubMed
  11. Dalton Trans. 2007 Sep 14;(34):3826-39 - PubMed
  12. Curr Opin Chem Biol. 2001 Apr;5(2):201-8 - PubMed
  13. Chemistry. 2010 Aug 2;16(29):8878-86 - PubMed
  14. Met Ions Biol Syst. 2003;40:369-462 - PubMed
  15. Chem Commun (Camb). 2011 Jun 7;47(21):6036-8 - PubMed
  16. J Mol Recognit. 2012 Jun;25(6):352-60 - PubMed
  17. J Am Chem Soc. 2003 Feb 19;125(7):1988-93 - PubMed
  18. Org Biomol Chem. 2013 Mar 28;11(12):1942-51 - PubMed
  19. Chemistry. 2009;15(15):3720-8 - PubMed
  20. Chemistry. 2015 May 26;21(22):8064-8 - PubMed
  21. Dalton Trans. 2004 Jul 7;(13):2006-11 - PubMed
  22. Chem Commun (Camb). 2004 Mar 7;(5):536-7 - PubMed
  23. Biochem J. 1997 Aug 15;326 ( Pt 1):279-87 - PubMed
  24. J Am Chem Soc. 2014 Jan 29;136(4):1158-61 - PubMed
  25. Adv Drug Deliv Rev. 2005 Dec 6;57(12):1742-78 - PubMed
  26. Chem Rev. 2002 Jul;102(7):2497-521 - PubMed
  27. J Am Chem Soc. 2006 Dec 20;128(50):16398-405 - PubMed
  28. Org Biomol Chem. 2004 Sep 21;2(18):2664-70 - PubMed
  29. J Am Chem Soc. 2009 Sep 30;131(38):13738-48 - PubMed
  30. J Org Chem. 1999 Apr 16;64(8):2683-2689 - PubMed
  31. Inorg Chem. 2009 Jan 5;48(1):319-24 - PubMed
  32. Bioorg Med Chem Lett. 2001 Dec 3;11(23):3061-4 - PubMed

Publication Types