Display options
Share it on

Sci Rep. 2015 Dec 03;5:17729. doi: 10.1038/srep17729.

Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging.

Scientific reports

Katja Henzler, Axel Heilemann, Janosch Kneer, Peter Guttmann, He Jia, Eckhard Bartsch, Yan Lu, Stefan Palzer

Affiliations

  1. Institute for Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  2. Institut für Makromolekulare Chemie, University of Freiburg, 79104 Freiburg, Germany.
  3. Institut für Physikalische Chemie, University of Freiburg, 79104 Freiburg, Germany.
  4. Laboratory for Gas Sensors, Department of Microsystems Engineering, University of Freiburg, Georges-Köhler Allee 102, 79110 Freiburg.

PMID: 26631608 PMCID: PMC4668554 DOI: 10.1038/srep17729

Abstract

In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions.

References

  1. J Colloid Interface Sci. 2003 Mar 15;259(2):282-6 - PubMed
  2. Nat Mater. 2005 May;4(5):366-77 - PubMed
  3. Phys Rev B Condens Matter. 1992 Feb 15;45(7):3309-3318 - PubMed
  4. Angew Chem Int Ed Engl. 2011 Apr 11;50(16):3764-8 - PubMed
  5. Nanotechnology. 2013 Jul 5;24(26):265603 - PubMed
  6. Annu Rev Phys Chem. 2014;65:395-422 - PubMed
  7. Sensors (Basel). 2012;12(3):2610-31 - PubMed
  8. Phys Rev B Condens Matter. 1989 Jan 15;39(3):1541-1545 - PubMed
  9. Phys Rev B Condens Matter. 1988 Dec 1;38(16):11322-11330 - PubMed
  10. J Am Chem Soc. 2012 Jan 18;134(2):1261-7 - PubMed
  11. Angew Chem Int Ed Engl. 2013 Aug 12;52(33):8526-44 - PubMed
  12. Phys Rev B Condens Matter. 1989 Sep 15;40(8):5715-5723 - PubMed
  13. Nat Rev Drug Discov. 2015 Apr;14(4):239-47 - PubMed
  14. Rev Sci Instrum. 2014 May;85(5):055006 - PubMed
  15. J Phys Chem B. 2006 Jul 20;110(28):13829-34 - PubMed
  16. Angew Chem Int Ed Engl. 2007;46(21):3826-48 - PubMed
  17. Chemphyschem. 2010 Jan 18;11(1):79-82 - PubMed

Publication Types