Display options
Share it on

Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):E413-9. doi: 10.1073/pnas.1518206113. Epub 2016 Jan 11.

Close relation between quantum interference in molecular conductance and diradical existence.

Proceedings of the National Academy of Sciences of the United States of America

Yuta Tsuji, Roald Hoffmann, Mikkel Strange, Gemma C Solomon

Affiliations

  1. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853;
  2. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; [email protected].
  3. Nano-Science Center and Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark.

PMID: 26755578 PMCID: PMC4743817 DOI: 10.1073/pnas.1518206113

Abstract

An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.

Keywords: determinants; diradicals; molecular conductance; nonbonding orbitals; quantum interference

References

  1. J Comput Chem. 2015 Feb 5;36(4):201-9 - PubMed
  2. Phys Chem Chem Phys. 2011 Jul 7;13(25):11792-813 - PubMed
  3. Nat Chem. 2010 Mar;2(3):223-8 - PubMed
  4. Chem Rev. 2013 Sep 11;113(9):7011-88 - PubMed
  5. J Am Chem Soc. 2013 Nov 13;135(45):17144-54 - PubMed
  6. Phys Rev B Condens Matter. 1985 May 15;31(10):6207-6215 - PubMed
  7. J Am Chem Soc. 2008 Dec 24;130(51):17301-8 - PubMed
  8. J Am Chem Soc. 2011 Apr 20;133(15):5955-65 - PubMed
  9. Chemphyschem. 2002 Dec 16;3(12):1035-7 - PubMed
  10. J Chem Phys. 2015 Mar 7;142(9):094103 - PubMed
  11. Chem Commun (Camb). 2014 Jul 18;50(56):7401-2 - PubMed
  12. Chem Soc Rev. 2015 Feb 21;44(4):875-88 - PubMed
  13. J Org Chem. 2013 Sep 20;78(18):9282-90 - PubMed
  14. J Am Chem Soc. 2011 Aug 3;133(30):11426-9 - PubMed
  15. Nano Lett. 2010 Oct 13;10(10):4260-5 - PubMed
  16. J Am Chem Soc. 2015 May 13;137(18):5923-9 - PubMed
  17. J Chem Phys. 2008 Aug 7;129(5):054701 - PubMed
  18. Chem Commun (Camb). 2013 Nov 18;49(89):10456-8 - PubMed
  19. Phys Chem Chem Phys. 2015 Sep 28;17(36):23378-83 - PubMed
  20. J Chem Phys. 2014 Dec 14;141(22):224311 - PubMed
  21. J Am Chem Soc. 2004 May 5;126(17):5577-84 - PubMed
  22. Beilstein J Nanotechnol. 2011;2:862-71 - PubMed
  23. J Am Chem Soc. 2007 Feb 7;129(5):1434-44 - PubMed
  24. J Am Chem Soc. 2013 Oct 2;135(39):14713-25 - PubMed
  25. J Am Chem Soc. 2015 Jul 29;137(29):9222-5 - PubMed

Publication Types