Display options
Share it on

Ecol Evol. 2015 Sep 14;5(19):4327-44. doi: 10.1002/ece3.1682. eCollection 2015 Oct.

Spatial and ecological population genetic structures within two island-endemic Aeonium species of different niche width.

Ecology and evolution

David E V Harter, Mike Thiv, Alfons Weig, Anke Jentsch, Carl Beierkuhnlein

Affiliations

  1. Biogeography BayCEER University of Bayreuth Bayreuth Germany.
  2. State Museum of Natural History Stuttgart Stuttgart Germany.
  3. DNA Analytics and Ecoinformatics BayCEER University of Bayreuth Bayreuth Germany.
  4. Disturbance Ecology BayCEER University of Bayreuth Bayreuth Germany.

PMID: 26664682 PMCID: PMC4667834 DOI: 10.1002/ece3.1682

Abstract

The Crassulacean genus Aeonium is a well-known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra-island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island-endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci-environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.

Keywords: Gene flow barriers; island biogeography; isolation by distance; isolation by ecology; landscape genetics; niche width

References

  1. Trends Ecol Evol. 2000 Mar;15(3):104-109 - PubMed
  2. Mol Ecol. 2005 Jul;14(8):2611-20 - PubMed
  3. J Plant Res. 2013 Nov;126(6):763-74 - PubMed
  4. Mol Ecol. 2013 Dec;22(24):5983-99 - PubMed
  5. Bioinformatics. 2011 Jun 15;27(12):1717-8 - PubMed
  6. Mol Ecol. 2000 Aug;9(8):1061-7 - PubMed
  7. Evolution. 1999 Dec;53(6):1898-1914 - PubMed
  8. PLoS One. 2014 May 30;9(5):e98602 - PubMed
  9. Mol Ecol. 2002 Jan;11(1):139-51 - PubMed
  10. Nature. 2006 May 11;441(7090):210-3 - PubMed
  11. Evolution. 1993 Feb;47(1):264-279 - PubMed
  12. Trends Ecol Evol. 2008 Jan;23(1):38-44 - PubMed
  13. Bioinformatics. 2012 Oct 1;28(19):2537-9 - PubMed
  14. Science. 2006 Jul 14;313(5784):224-6 - PubMed
  15. Genetics. 1943 Mar;28(2):114-38 - PubMed
  16. Ann Bot. 2013 Jun;111(6):1059-73 - PubMed
  17. Genetics. 1997 Apr;145(4):1219-28 - PubMed
  18. Mol Ecol. 2015 Aug;24(15):3944-63 - PubMed
  19. Philos Trans R Soc Lond B Biol Sci. 2014 Aug 5;369(1648): - PubMed
  20. Mol Ecol. 2014 Oct;23(19):4799-812 - PubMed
  21. PLoS One. 2015 Jul 14;10(7):e0132091 - PubMed
  22. Bot J Linn Soc. 2014 Mar;174(3):276-288 - PubMed
  23. Mol Ecol Resour. 2009 Sep;9(5):1322-32 - PubMed
  24. Evolution. 2014 May;68(5):1270-80 - PubMed
  25. Mol Ecol. 2014 Dec;23(23):5649-62 - PubMed
  26. Nature. 2009 Feb 12;457(7231):830-6 - PubMed
  27. Mol Biol Evol. 2013 Jul;30(7):1687-99 - PubMed
  28. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10314-9 - PubMed
  29. Nature. 2003 Jan 16;421(6920):259-64 - PubMed
  30. Mol Ecol. 2006 Oct;15(12):3631-40 - PubMed
  31. Nat Rev Genet. 2013 Nov;14(11):807-20 - PubMed
  32. Ecol Evol. 2015 Sep 14;5(19):4327-44 - PubMed
  33. Ecol Lett. 2013 Feb;16(2):175-82 - PubMed
  34. Mol Ecol. 2007 Sep;16(18):3955-69 - PubMed
  35. Genomics. 1994 Mar 15;20(2):176-83 - PubMed
  36. Biol Rev Camb Philos Soc. 2015 Aug;90(3):815-36 - PubMed
  37. Proc Biol Sci. 2014 Jan 08;281(1777):20132858 - PubMed
  38. BMC Genet. 2010 Oct 15;11:94 - PubMed
  39. Science. 2004 Jan 16;303(5656):356-9 - PubMed
  40. Heredity (Edinb). 2014 Oct;113(4):334-42 - PubMed
  41. Mol Ecol. 2005 Jun;14(7):1979-89 - PubMed
  42. Genetics. 2000 Jun;155(2):945-59 - PubMed
  43. Trends Ecol Evol. 2009 Jul;24(7):394-9 - PubMed
  44. PLoS One. 2014 Jul 08;9(7):e101046 - PubMed
  45. PLoS One. 2008 May 14;3(5):e2139 - PubMed
  46. Mol Ecol. 2004 May;13(5):1143-55 - PubMed
  47. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9402-6 - PubMed
  48. Mol Ecol Notes. 2007 Jul 1;7(4):574-578 - PubMed
  49. Genetics. 2008 Oct;180(2):977-93 - PubMed
  50. Bioinformatics. 2007 Jul 15;23(14):1801-6 - PubMed
  51. BMC Evol Biol. 2014 Jun 02;14:118 - PubMed
  52. PLoS One. 2014 Feb 03;9(2):e87469 - PubMed
  53. Mol Ecol. 2011 Jul;20(13):2676-92 - PubMed

Publication Types