Display options
Share it on

Front Cardiovasc Med. 2014 Dec 10;1:11. doi: 10.3389/fcvm.2014.00011. eCollection 2014.

Dual Linkage of a Locus to Left Ventricular Mass and a Cardiac Gene Co-Expression Network Driven by a Chromosome Domain.

Frontiers in cardiovascular medicine

Marie-Pier Scott-Boyer, Samantha D Praktiknjo, Bastien Llamas, Sylvie Picard, Christian F Deschepper

Affiliations

  1. Cardiovascular Biology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Université de Montréal , Montréal, QC , Canada.

PMID: 26664861 PMCID: PMC4668859 DOI: 10.3389/fcvm.2014.00011

Abstract

We have previously reported Lvm1 as a quantitative trait locus (QTL) on chromosome 13 that links to cardiac left ventricular mass (LVM) in a panel of AxB/BxA mouse recombinant inbred strains (RIS). When performing a gene expression QTL (eQTL) analysis, we detected 33 cis-eQTLs that correlated with LVM. Among the latter, a group of eight cis-eQTLs clustered in a genomic region smaller than 6 Mb and surrounding the Lvm1 peak on chr13. Co-variant analysis indicated that all eight genes correlated with the phenotype in a causal rather than a reactive fashion, a finding that (despite its functional interest) did not provide grounds to prioritize any of these candidate genes. As a complementary approach, we performed weighted gene co-expression network analysis, which allowed us to detect 49 modules of highly connected genes. The module that correlated best with LVM: (1) showed linkage to a module QTL whose boundaries matched closely those of the phenotypic Lvm1 QTL on chr13; (2) harbored a disproportionately high proportion of genes originating from a small genomic region on chromosome 13 (including the 8 previously detected cis-eQTL genes); (3) contained genes that, beyond their individual level of expression, correlated with LVM as a function of their inter-connectivity; and (4) showed increased abundance of polymorphic insertion-deletion elements in the same region. Taken together, these data suggest that a domain on chromosome 13 constitutes the biologic principle responsible for the organization and linkage of the gene co-expression module, and indicate a mechanism whereby genetic variants within chromosome domains may associate to phenotypic changes via coordinate changes in the expression of several genes. One other possible implication of these findings is that candidate genes to consider as contributors to a particular phenotype should extend further than those that are closest to the QTL peak.

Keywords: cardiac complex traits; cardiac left ventricular mass; chromosome domain; genetics of gene expression; mouse recombinant inbred strains; weighted gene co-expression network analysis

References

  1. Genome Biol. 2012 Jun 15;13(6):R45 - PubMed
  2. Genome Res. 2013 Dec;23(12):1996-2002 - PubMed
  3. Mamm Genome. 1992;3(12):669-80 - PubMed
  4. Genome Res. 2014 Jan;24(1):14-24 - PubMed
  5. G3 (Bethesda). 2013 Apr 9;3(4):597-605 - PubMed
  6. Genetics. 2006 Sep;174(1):481-9 - PubMed
  7. Nucleic Acids Res. 2009 Sep;37(17):5610-8 - PubMed
  8. Hum Mol Genet. 2008 Oct 15;17(R2):R129-34 - PubMed
  9. Nat Genet. 2012 Jul 27;44(8):841-7 - PubMed
  10. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  11. Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):216-22 - PubMed
  12. Nat Rev Genet. 2009 Dec;10(12):872-8 - PubMed
  13. Circ Res. 2001 Feb 2;88(2):223-8 - PubMed
  14. Nature. 2010 Oct 14;467(7317):832-8 - PubMed
  15. Nature. 2013 Aug 1;500(7460):45-50 - PubMed
  16. Bioinformatics. 2003 May 1;19(7):889-90 - PubMed
  17. PLoS Genet. 2010 Apr 01;6(4):e1000888 - PubMed
  18. Nat Genet. 2009 Apr;41(4):415-23 - PubMed
  19. Nature. 2008 Mar 27;452(7186):429-35 - PubMed
  20. Nat Genet. 1999 Jan;21(1):76-83 - PubMed
  21. Physiol Genomics. 2007 Oct 22;31(2):176-82 - PubMed
  22. J Mol Med (Berl). 2009 Mar;87(3):249-60 - PubMed
  23. BMC Bioinformatics. 2008 Dec 29;9:559 - PubMed
  24. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4530-5 - PubMed
  25. Nat Genet. 2008 May;40(5):546-52 - PubMed
  26. Behav Genet. 2004 Mar;34(2):127-33 - PubMed
  27. Biostatistics. 2007 Jan;8(1):118-27 - PubMed
  28. Physiol Genomics. 2011 Nov 7;43(21):1207-18 - PubMed
  29. Am J Cardiovasc Dis. 2012;2(4):267-78 - PubMed
  30. J Biol Chem. 2007 Dec 21;282(51):37045-52 - PubMed
  31. PLoS Genet. 2010 Apr 01;6(4):e1000895 - PubMed
  32. Circ Res. 2012 Aug 3;111(4):493-504 - PubMed
  33. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15553-9 - PubMed
  34. Trends Genet. 2010 Dec;26(12):493-8 - PubMed
  35. Stat Appl Genet Mol Biol. 2005;4:Article17 - PubMed
  36. J Lipid Res. 2012 Jun;53(6):1163-75 - PubMed
  37. PLoS Comput Biol. 2012;8(12):e1002820 - PubMed
  38. J Biol Chem. 2008 Aug 8;283(32):22157-65 - PubMed
  39. Physiol Genomics. 2012 Jan 18;44(1):1-13 - PubMed
  40. Nat Genet. 1995 Nov;11(3):241-7 - PubMed
  41. Nat Rev Cardiol. 2011 Oct 25;8(12):673-85 - PubMed
  42. Nat Genet. 2008 Aug;40(8):952-4 - PubMed
  43. Front Genet. 2013 Dec 26;4:291 - PubMed
  44. Nucleic Acids Res. 2010 Jan;38(Database issue):D600-6 - PubMed
  45. Science. 2012 Sep 7;337(6099):1190-5 - PubMed

Publication Types