Display options
Share it on

Front Comput Neurosci. 2015 Dec 10;9:143. doi: 10.3389/fncom.2015.00143. eCollection 2015.

A Computational Model for Aperture Control in Reach-to-Grasp Movement Based on Predictive Variability.

Frontiers in computational neuroscience

Naohiro Takemura, Takao Fukui, Toshio Inui

Affiliations

  1. Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-honmachi Kyoto, Japan.

PMID: 26696874 PMCID: PMC4675317 DOI: 10.3389/fncom.2015.00143

Abstract

In human reach-to-grasp movement, visual occlusion of a target object leads to a larger peak grip aperture compared to conditions where online vision is available. However, no previous computational and neural network models for reach-to-grasp movement explain the mechanism of this effect. We simulated the effect of online vision on the reach-to-grasp movement by proposing a computational control model based on the hypothesis that the grip aperture is controlled to compensate for both motor variability and sensory uncertainty. In this model, the aperture is formed to achieve a target aperture size that is sufficiently large to accommodate the actual target; it also includes a margin to ensure proper grasping despite sensory and motor variability. To this end, the model considers: (i) the variability of the grip aperture, which is predicted by the Kalman filter, and (ii) the uncertainty of the object size, which is affected by visual noise. Using this model, we simulated experiments in which the effect of the duration of visual occlusion was investigated. The simulation replicated the experimental result wherein the peak grip aperture increased when the target object was occluded, especially in the early phase of the movement. Both predicted motor variability and sensory uncertainty play important roles in the online visuomotor process responsible for grip aperture control.

Keywords: Kalman filter; computational model; motor control; online vision; reach-to-grasp movement

References

  1. J Mot Behav. 1986 Sep;18(3):245-60 - PubMed
  2. J Neurosci. 1985 Jul;5(7):1688-703 - PubMed
  3. Nat Neurosci. 2002 Nov;5(11):1226-35 - PubMed
  4. Nature. 2004 Jan 15;427(6971):244-7 - PubMed
  5. Nat Neurosci. 2006 Nov;9(11):1432-8 - PubMed
  6. Spat Vis. 2003;16(3-4):243-54 - PubMed
  7. J Neurosci. 2008 Mar 12;28(11):2883-91 - PubMed
  8. Exp Brain Res. 2007 Sep;182(1):47-57 - PubMed
  9. J Comput Neurosci. 2008 Feb;24(1):57-68 - PubMed
  10. Motor Control. 1999 Jul;3(3):237-71 - PubMed
  11. Nat Neurosci. 2004 Sep;7(9):907-15 - PubMed
  12. Nat Neurosci. 2007 Jul;10(7):903-7 - PubMed
  13. Biol Cybern. 2006 May;94(5):393-407 - PubMed
  14. Neural Netw. 2003 Oct;16(8):1141-60 - PubMed
  15. Exp Brain Res. 1991;86(1):199-208 - PubMed
  16. Neural Netw. 2006 Jan;19(1):12-30 - PubMed
  17. Exp Brain Res. 2008 Jul;188(4):603-11 - PubMed
  18. Hum Mov Sci. 2006 Jun;25(3):349-71 - PubMed
  19. Exp Brain Res. 1995;102(3):483-94 - PubMed
  20. J Neurosci. 2008 Oct 29;28(44):11360-8 - PubMed
  21. Nature. 1998 Aug 20;394(6695):780-4 - PubMed
  22. J Neurophysiol. 2004 Feb;91(2):1050-63 - PubMed
  23. J Neurosci. 2005 Aug 3;25(31):7169-78 - PubMed
  24. Biol Cybern. 1989;61(2):89-101 - PubMed
  25. Exp Brain Res. 1991;87(2):407-20 - PubMed
  26. J Mot Behav. 1984 Sep;16(3):235-54 - PubMed
  27. Exp Brain Res. 2003 Oct;152(4):489-98 - PubMed
  28. Trends Neurosci. 1992 Jan;15(1):20-5 - PubMed
  29. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29;357(1424):1137-45 - PubMed
  30. J Neurosci. 2007 May 23;27(21):5744-56 - PubMed
  31. Cortex. 2007 Apr;43(3):289-300 - PubMed
  32. J Mot Behav. 1993 Sep;25(3):175-192 - PubMed
  33. Neural Comput. 2008 Mar;20(3):779-812 - PubMed
  34. Exp Brain Res. 1998 Apr;119(4):427-35 - PubMed
  35. J Exp Psychol. 1954 Jun;47(6):381-91 - PubMed
  36. Brain Res Cogn Brain Res. 1996 Dec;5(1-2):105-15 - PubMed

Publication Types