Display options
Share it on

Biotechnol Biofuels. 2015 Dec 02;8:206. doi: 10.1186/s13068-015-0392-y. eCollection 2015.

Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

Biotechnology for biofuels

Chaowei Yu, Amitha P Reddy, Christopher W Simmons, Blake A Simmons, Steven W Singer, Jean S VanderGheynst

Affiliations

  1. Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, CA 95616 USA.
  2. Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, CA 95616 USA ; Joint BioEnergy Institute, Emeryville, CA 94608 USA.
  3. Joint BioEnergy Institute, Emeryville, CA 94608 USA ; Department of Food Science and Technology, University of California, Davis, CA 95616 USA.
  4. Joint BioEnergy Institute, Emeryville, CA 94608 USA ; Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA 94551 USA.
  5. Joint BioEnergy Institute, Emeryville, CA 94608 USA ; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA.

PMID: 26633993 PMCID: PMC4667496 DOI: 10.1186/s13068-015-0392-y

Abstract

BACKGROUND: Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions.

RESULTS: High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms.

CONCLUSIONS: A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and high-solid conditions. The results suggest that the presence of microorganisms may be more important than their relative abundance in retaining an active microbial community.

Keywords: Biological lignocellulose deconstruction; Cryopreservation; Microbial community enrichment

References

  1. Appl Microbiol Biotechnol. 2002 Aug;59(4-5):529-34 - PubMed
  2. Bioresour Technol. 2013 Apr;133:573-80 - PubMed
  3. Biochem J. 1954 Feb;56(2):265-70 - PubMed
  4. Bioresour Technol. 2010 Jul;101(13):4900-6 - PubMed
  5. PLoS One. 2013 Oct 25;8(10):e77985 - PubMed
  6. Curr Opin Biotechnol. 2014 Oct;29:171-83 - PubMed
  7. Annu Rev Biophys Bioeng. 1974;3(0):341-63 - PubMed
  8. Int J Syst Evol Microbiol. 2015 Mar;65(Pt 3):885-9 - PubMed
  9. PLoS One. 2013 Jul 31;8(7):e70460 - PubMed
  10. Anaerobe. 2014 Oct;29:80-4 - PubMed
  11. PLoS One. 2010 Jan 21;5(1):e8812 - PubMed
  12. Biochim Biophys Acta. 1953 May;11(1):28-36 - PubMed
  13. Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2215-23 - PubMed
  14. Mikrobiologiia. 2007 Jul-Aug;76(4):573-6 - PubMed
  15. Biochim Biophys Acta. 2011 Mar;1807(3):262-9 - PubMed
  16. Gene. 2013 May 1;519(2):360-6 - PubMed
  17. Adv Biochem Eng Biotechnol. 2007;108:67-93 - PubMed
  18. Science. 1970 May 22;168(3934):939-49 - PubMed
  19. Appl Environ Microbiol. 2008 Nov;74(22):7080-4 - PubMed
  20. J Appl Microbiol. 2014 Oct;117(4):1025-34 - PubMed
  21. Appl Environ Microbiol. 2001 Dec;67(12):5740-9 - PubMed
  22. Biotechnol Biofuels. 2014 Jun 12;7:92 - PubMed
  23. Biotechnol Bioeng. 2011 Sep;108(9):2088-98 - PubMed
  24. Appl Microbiol Biotechnol. 2009 Nov;85(2):323-33 - PubMed
  25. PLoS One. 2014 Jun 17;9(6):e99517 - PubMed
  26. Appl Microbiol Biotechnol. 2012 May;94(3):565-74 - PubMed
  27. Microbes Environ. 2009;24(3):205-16 - PubMed
  28. FEMS Microbiol Lett. 2013 Feb;339(1):1-9 - PubMed
  29. Microbes Environ. 2013;28(2):163-5 - PubMed
  30. Open Microbiol J. 2009;3:40-6 - PubMed
  31. Biotechnol Bioeng. 2012 Apr;109(4):1083-7 - PubMed
  32. Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1843-51 - PubMed
  33. Biodegradation. 2011 Apr;22(2):367-75 - PubMed
  34. FEMS Microbiol Lett. 2010 Jun;307(1):80-6 - PubMed
  35. Adv Biochem Eng Biotechnol. 2007;108:95-120 - PubMed
  36. Microb Biotechnol. 2015 Sep;8(5):801-14 - PubMed
  37. Cryobiology. 2003 Jun;46(3):205-29 - PubMed
  38. Sci Rep. 2015 Sep 07;5:13845 - PubMed
  39. Genome Biol. 2008;9(12):242 - PubMed
  40. Antonie Van Leeuwenhoek. 1956;22(4):407-18 - PubMed
  41. FEMS Microbiol Lett. 2014 Jul;356(1):32-8 - PubMed
  42. Cryo Letters. 2004 Nov-Dec;25(6):375-88 - PubMed
  43. J Appl Microbiol. 2002;92(1):32-40 - PubMed
  44. J Appl Microbiol. 2012 Sep;113(3):521-30 - PubMed
  45. Science. 2010 Aug 13;329(5993):790-2 - PubMed
  46. Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):417-22 - PubMed
  47. J Microbiol Biotechnol. 2013 Oct 28;23(10):1472-7 - PubMed
  48. Appl Microbiol Biotechnol. 2014 Mar;98(6):2789-803 - PubMed

Publication Types