Display options
Share it on

Skelet Muscle. 2015 Dec 01;5:44. doi: 10.1186/s13395-015-0070-6. eCollection 2015.

Elusive sources of variability of dystrophin rescue by exon skipping.

Skeletal muscle

Maria Candida Vila, Margaret Benny Klimek, James S Novak, Sree Rayavarapu, Kitipong Uaesoontrachoon, Jessica F Boehler, Alyson A Fiorillo, Marshall W Hogarth, Aiping Zhang, Conner Shaughnessy, Heather Gordish-Dressman, Umar Burki, Volker Straub, Qi Long Lu, Terence A Partridge, Kristy J Brown, Yetrib Hathout, John van den Anker, Eric P Hoffman, Kanneboyina Nagaraju

Affiliations

  1. Research Center for Genetic Medicine, Children's National Health System, 111 Michigan Avenue N.W., Washington, DC, 20010 USA.
  2. Institute of Biomedical Sciences, The George Washington University, Washington, DC, USA.
  3. The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
  4. McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC USA.
  5. Center for Translational Science, Children's National Health System, Washington, DC, USA.

PMID: 26634117 PMCID: PMC4667482 DOI: 10.1186/s13395-015-0070-6

Abstract

BACKGROUND: Systemic delivery of anti-sense oligonucleotides to Duchenne muscular dystrophy (DMD) patients to induce de novo dystrophin protein expression in muscle (exon skipping) is a promising therapy. Treatment with Phosphorodiamidate morpholino oligomers (PMO) lead to shorter de novo dystrophin protein in both animal models and DMD boys who otherwise lack dystrophin; however, restoration of dystrophin has been observed to be highly variable. Understanding the factors causing highly variable induction of dystrophin expression in pre-clinical models would likely lead to more effective means of exon skipping in both pre-clinical studies and human clinical trials.

METHODS: In the present study, we investigated possible factors that might lead to the variable success of exon skipping using morpholino drugs in the mdx mouse model. We tested whether specific muscle groups or fiber types showed better success than others and also correlated residual PMO concentration in muscle with the amount of de novo dystrophin protein 1 month after a single high-dose morpholino injection (800 mg/kg). We compared the results from six muscle groups using three different methods of dystrophin quantification: immunostaining, immunoblotting, and mass spectrometry assays.

RESULTS: The triceps muscle showed the greatest degree of rescue (average 38±28 % by immunostaining). All three dystrophin detection methods were generally concordant for all muscles. We show that dystrophin rescue occurs in a sporadic patchy pattern with high geographic variability across muscle sections. We did not find a correlation between residual morpholino drug in muscle tissue and the degree of dystrophin expression.

CONCLUSIONS: While we found some evidence of muscle group enhancement and successful rescue, our data also suggest that other yet-undefined factors may underlie the observed variability in the success of exon skipping. Our study highlights the challenges associated with quantifying dystrophin in clinical trials where a single small muscle biopsy is taken from a DMD patient.

Keywords: Duchenne muscular dystrophy; Dystrophin; Exon skipping; Variability; mdx-23

References

  1. Br J Nutr. 1998 Mar;79(3):297-304 - PubMed
  2. Lancet Neurol. 2010 Feb;9(2):177-89 - PubMed
  3. Cell Rep. 2015 Sep 8;12(10):1678-90 - PubMed
  4. Lancet Neurol. 2014 Oct;13(10):987-96 - PubMed
  5. Lancet. 2002 Feb 23;359(9307):687-95 - PubMed
  6. Arch Dis Child. 2008 Nov;93(11):986-90 - PubMed
  7. J Cell Biol. 1995 Feb;128(3):355-61 - PubMed
  8. J Biol Chem. 2012 Aug 31;287(36):30455-67 - PubMed
  9. Ann Neurol. 2009 Jun;65(6):667-76 - PubMed
  10. Am J Pathol. 2008 Nov;173(5):1476-87 - PubMed
  11. J Muscle Res Cell Motil. 1991 Dec;12(6):585-9 - PubMed
  12. Circulation. 1963 Apr;27(4 Pt 1):484-93 - PubMed
  13. Brain. 2010 Apr;133(Pt 4):957-72 - PubMed
  14. Lancet Neurol. 2010 Jan;9(1):77-93 - PubMed
  15. Ann Neurol. 2013 Nov;74(5):637-47 - PubMed
  16. Am J Pathol. 2011 Jul;179(1):12-22 - PubMed
  17. J Cell Biol. 2014 Oct 13;207(1):139-58 - PubMed
  18. Lancet Neurol. 2009 Oct;8(10):918-28 - PubMed
  19. Nucleic Acid Ther. 2015 Oct;25(5):275-84 - PubMed
  20. Nature. 1991 Jan 3;349(6304):69-71 - PubMed
  21. N Engl J Med. 2011 Apr 21;364(16):1513-22 - PubMed
  22. Science. 1987 Oct 16;238(4825):347-50 - PubMed
  23. Mol Imaging Biol. 2011 Jun;13(3):462-70 - PubMed
  24. Muscle Nerve. 2009 May;39(5):591-602 - PubMed
  25. Nat Med. 2006 Feb;12(2):175-7 - PubMed
  26. Expert Opin Biol Ther. 2007 Jun;7(6):831-42 - PubMed
  27. Mol Ther. 2011 Feb;19(2):345-54 - PubMed
  28. Mol Cell Proteomics. 2013 May;12(5):1061-73 - PubMed
  29. Mol Cell Biol Hum Dis Ser. 1993;3:12-36 - PubMed
  30. Mol Ther. 2010 Nov;18(11):1995-2005 - PubMed
  31. PLoS One. 2012;7(5):e37890 - PubMed
  32. J Bioanal Biomed. 2012 Dec 18;Suppl 7:null - PubMed
  33. Toxicol Rep. 2015;2:838-849 - PubMed
  34. Lancet. 2011 Aug 13;378(9791):595-605 - PubMed
  35. Mol Aspects Med. 1991;12(3):175-94 - PubMed
  36. J Physiol. 2005 Feb 15;563(Pt 1):203-11 - PubMed
  37. Muscle Nerve. 2013 Jul;48(1):27-31 - PubMed
  38. Int J Toxicol. 2011 May;30(3):322-33 - PubMed
  39. Neuromuscul Disord. 1996 Oct;6(5):367-76 - PubMed
  40. Nature. 1975 Mar 27;254(5498):350-1 - PubMed
  41. Mol Ther. 2011 Jan;19(1):165-71 - PubMed
  42. Gene Ther. 2010 Jan;17(1):132-40 - PubMed
  43. J Cell Sci. 1995 Feb;108 ( Pt 2):727-33 - PubMed
  44. Sci Transl Med. 2014 Apr 2;6(230):230fs14 - PubMed
  45. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):198-203 - PubMed

Publication Types

Grant support