Display options
Share it on

Genom Data. 2015 Oct 17;6:245-8. doi: 10.1016/j.gdata.2015.10.008. eCollection 2015 Dec.

The conserved HDAC Rpd3 drives transcriptional quiescence in S. cerevisiae.

Genomics data

Jeffrey N McKnight, Toshio Tsukiyama

Affiliations

  1. Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

PMID: 26697386 PMCID: PMC4664762 DOI: 10.1016/j.gdata.2015.10.008

Abstract

Quiescence is a ubiquitous cell cycle stage conserved from microbes through humans and is essential to normal cellular function and response to changing environmental conditions. We recently reported a massive repressive event associated with quiescence in Saccharomyces cerevisiae, where Rpd3 establishes repressive chromatin structure that drives transcriptional shutoff [6]. Here, we describe in detail the experimental procedures, data collection, and data analysis related to our characterization of transcriptional quiescence in budding yeast (GEO: GSE67151). Our results provide a bona fide molecular event driven by widespread changes in chromatin structure through action of Rpd3 that distinguishes quiescence as a unique cell cycle stage in S. cerevisiae.

Keywords: Chromatin; Histone deacetylase; Nucleosome positions; Transcription; Yeast quiescence

References

  1. Genome Biol. 2013 Apr 25;14(4):R36 - PubMed
  2. Curr Protoc Mol Biol. 2014 Oct 01;108:21.28.1-16 - PubMed
  3. Nucleic Acids Res. 2014 Jan;42(Database issue):D749-55 - PubMed
  4. Science. 2008 Jun 6;320(5881):1344-9 - PubMed
  5. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  6. Nucleic Acids Res. 2014 Jan;42(Database issue):D142-7 - PubMed
  7. Nat Protoc. 2012 Mar 01;7(3):562-78 - PubMed
  8. Mol Cell. 2015 Sep 3;59(5):732-43 - PubMed
  9. J Cell Biol. 2006 Jul 3;174(1):89-100 - PubMed

Publication Types

Grant support