Display options
Share it on

Front Cell Neurosci. 2015 Nov 19;9:450. doi: 10.3389/fncel.2015.00450. eCollection 2015.

Norepinephrine Modulates Pyramidal Cell Synaptic Properties in the Anterior Piriform Cortex of Mice: Age-Dependent Effects of β-adrenoceptors.

Frontiers in cellular neuroscience

Abhinaba Ghosh, Nicole C Purchase, Xihua Chen, Qi Yuan

Affiliations

  1. Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's NL, Canada.

PMID: 26635530 PMCID: PMC4652601 DOI: 10.3389/fncel.2015.00450

Abstract

Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10-12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice - odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8-11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8-11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.

Keywords: early odor preference learning; miniature EPSC; miniature IPSC; norepinephrine; pyriform cortex; β-adrenoceptor

References

  1. Brain Res. 1989 Apr 17;485(1):125-40 - PubMed
  2. Behav Neural Biol. 1994 Jan;61(1):1-18 - PubMed
  3. Brain Res. 1988 Apr 1;467(2):309-12 - PubMed
  4. J Neurophysiol. 1987 Sep;58(3):510-24 - PubMed
  5. Neuroscience. 2010 Aug 25;169(2):882-92 - PubMed
  6. J Comp Neurol. 1993 Feb 22;328(4):575-94 - PubMed
  7. Eur J Neurosci. 2008 Mar;27(5):1210-9 - PubMed
  8. J Comp Neurol. 1994 Jan 22;339(4):475-94 - PubMed
  9. J Neurophysiol. 1997 Jun;77(6):3326-39 - PubMed
  10. Eur J Pharmacol. 1996 Jun 3;305(1-3):95-100 - PubMed
  11. J Neurophysiol. 2013 Jul;110(1):141-52 - PubMed
  12. J Neurophysiol. 2006 Oct;96(4):1728-33 - PubMed
  13. Neuron. 2006 Feb 2;49(3):357-63 - PubMed
  14. Science. 1979 Jul 27;205(4404):419-21 - PubMed
  15. J Neurophysiol. 2012 Oct;108(7):1999-2007 - PubMed
  16. Prog Neurobiol. 1990;34(6):505-26 - PubMed
  17. Annu Rev Neurosci. 2004;27:549-79 - PubMed
  18. J Neurophysiol. 2008 Apr;99(4):2021-5 - PubMed
  19. Brain Res. 1987 Sep;432(1):21-6 - PubMed
  20. Neuroscience. 2007 Jun 8;146(4):1772-84 - PubMed
  21. Prog Brain Res. 2014;208:115-56 - PubMed
  22. Brain Res Bull. 1994;35(5-6):473-84 - PubMed
  23. Nature. 2000 Sep 7;407(6800):38-9 - PubMed
  24. Learn Mem. 2009 Oct 26;16(11):676-81 - PubMed
  25. Eur J Neurosci. 2002 Dec;16(12 ):2371-82 - PubMed
  26. Chem Senses. 2001 Jun;26(5):585-94 - PubMed
  27. Neurobiol Learn Mem. 1997 Jan;67(1):34-42 - PubMed
  28. Dev Psychobiol. 2001 Nov;39(3):188-98 - PubMed
  29. Brain Res Dev Brain Res. 1995 Apr 18;85(2):187-91 - PubMed
  30. J Neurophysiol. 2001 Nov;86(5):2173-82 - PubMed
  31. Dev Psychobiol. 1982 Jul;15(4):379-97 - PubMed
  32. J Neurosci. 2014 Nov 12;34(46):15394-401 - PubMed
  33. Brain Res. 1987 Dec 1;433(2):309-13 - PubMed
  34. Behav Neural Biol. 1993 Sep;60(2):152-62 - PubMed
  35. J Neurophysiol. 2004 Jul;92(1):144-56 - PubMed
  36. Science. 1986 Feb 14;231(4739):729-31 - PubMed
  37. J Neurophysiol. 2009 May;101(5):2472-84 - PubMed
  38. Neuroscience. 1998 Apr;83(3):905-16 - PubMed
  39. J Neurosci. 2007 Jul 11;27(28):7553-8 - PubMed
  40. Learn Mem. 2009 Jan 29;16(2):114-21 - PubMed
  41. Learn Mem. 2007 Aug 03;14 (8):539-47 - PubMed
  42. Sci Rep. 2012;2:417 - PubMed
  43. Genes Brain Behav. 2013 Oct;12 (7):673-80 - PubMed
  44. Eur J Neurosci. 2010 Aug;32(3):458-68 - PubMed
  45. Learn Mem. 2013 Apr 17;20(5):274-84 - PubMed
  46. Nature. 1978 Dec 21-28;276(5690):837-9 - PubMed
  47. J Neurosci. 2004 Jan 21;24(3):652-60 - PubMed
  48. Brain Res. 1984 Mar 5;294(2):211-23 - PubMed
  49. Cereb Cortex. 2008 Jul;18(7):1506-20 - PubMed
  50. Brain Res. 1986 Jun;392(1-2):278-82 - PubMed
  51. J Comp Neurol. 1994 Jan 22;339(4):459-74 - PubMed
  52. PLoS One. 2012;7(4):e35024 - PubMed
  53. Brain Res Dev Brain Res. 1993 Jun 8;73(2):213-23 - PubMed
  54. Behav Neurosci. 2000 Oct;114(5):957-62 - PubMed
  55. J Neurosci. 2011 Feb 9;31(6):2156-66 - PubMed
  56. J Neurosci. 1994 Jul;14(7):4252-68 - PubMed
  57. Neuroscience. 1986 Dec;19(4):1303-9 - PubMed
  58. J Neurosci. 2006 Jun 21;26(25):6737-48 - PubMed
  59. Learn Mem. 2006 Jan-Feb;13(1):8-13 - PubMed
  60. J Neurophysiol. 2011 Apr;105(4):1432-43 - PubMed
  61. Learn Mem. 2012 Oct 15;19(11):499-502 - PubMed
  62. Dev Psychobiol. 1988 Jan;21(1):25-42 - PubMed
  63. Brain Res Bull. 1999 Feb;48(3):263-76 - PubMed
  64. J Neurophysiol. 2010 Aug;104(2):665-74 - PubMed
  65. Neuroscience. 1993 Oct;56(4):1023-39 - PubMed
  66. Neuropharmacology. 2014 Aug;83:89-98 - PubMed

Publication Types