Display options
Share it on

Nat Commun. 2015 Dec 15;6:10233. doi: 10.1038/ncomms10233.

Tracking molecular resonance forms of donor-acceptor push-pull molecules by single-molecule conductance experiments.

Nature communications

Henriette Lissau, Riccardo Frisenda, Stine T Olsen, Martyn Jevric, Christian R Parker, Anders Kadziola, Thorsten Hansen, Herre S J van der Zant, Mogens Brøndsted Nielsen, Kurt V Mikkelsen

Affiliations

  1. Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen DK-2100, Denmark.
  2. Kavli Institute of Nanoscience, Delft University of Technology, GA Delft 2600, The Netherlands.

PMID: 26667583 PMCID: PMC4682163 DOI: 10.1038/ncomms10233

Abstract

The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor-acceptor molecules. Here we report that donor-acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor-acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor-acceptor cruciforms is tuned by small changes in the environment.

References

  1. Chem Rev. 2015 Jun 10;115(11):5056-115 - PubMed
  2. Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3152-5 - PubMed
  3. ACS Nano. 2010 Nov 23;4(11):6681-6 - PubMed
  4. J Am Chem Soc. 2014 Nov 26;136(47):16497-507 - PubMed
  5. Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8815-20 - PubMed
  6. J Am Chem Soc. 2012 Mar 21;134(11):5262-75 - PubMed
  7. Org Biomol Chem. 2007 Aug 7;5(15):2343-53 - PubMed
  8. J Am Chem Soc. 2008 Jan 23;130(3):1080-4 - PubMed
  9. Chemistry. 2005 May 6;11(10):2914-22 - PubMed
  10. Org Lett. 2006 Mar 16;8(6):1173-6 - PubMed
  11. Nat Nanotechnol. 2009 Sep;4(9):551-6 - PubMed
  12. Nano Lett. 2005 Jan;5(1):61-5 - PubMed
  13. Nano Lett. 2012 May 9;12(5):2243-8 - PubMed
  14. Acc Chem Res. 2014 Apr 15;47(4):1417-25 - PubMed
  15. Angew Chem Int Ed Engl. 2003;42(47):5834-8 - PubMed
  16. Beilstein J Nanotechnol. 2011;2:862-71 - PubMed
  17. Chem Soc Rev. 2005 Jan;34(1):69-98 - PubMed
  18. J Am Chem Soc. 2008 Jun 25;130(25):7788-9 - PubMed
  19. Chem Soc Rev. 2014 Nov 7;43(21):7378-411 - PubMed
  20. Phys Chem Chem Phys. 2014 Jan 14;16(2):653-62 - PubMed
  21. Chem Rev. 2003 Sep;103(9):3803-34 - PubMed

Publication Types