Display options
Share it on

J Am Chem Soc. 2016 Feb 03;138(4):1265-72. doi: 10.1021/jacs.5b11294. Epub 2016 Jan 25.

Aerobic Linear Allylic C-H Amination: Overcoming Benzoquinone Inhibition.

Journal of the American Chemical Society

Christopher C Pattillo, Iulia I Strambeanu, Pilar Calleja, Nicolaas A Vermeulen, Tomokazu Mizuno, M Christina White

Affiliations

  1. Roger Adams Laboratory, Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States.

PMID: 26730458 PMCID: PMC4831720 DOI: 10.1021/jacs.5b11294

Abstract

An efficient aerobic linear allylic C-H amination reaction is reported under palladium(II)/bis-sulfoxide/Brønsted base catalysis. The reaction operates under preparative, operationally simple conditions (1 equiv of olefin, 1 atm O2 or air) with reduced Pd(II)/bis-sulfoxide catalyst loadings while providing higher turnovers and product yields than systems employing stoichiometric benzoquinone (BQ) as the terminal oxidant. Pd(II)/BQ π-acidic interactions have been invoked in various catalytic processes and are often considered beneficial in promoting reductive functionalizations. When such electrophilic activation for functionalization is not needed, however, BQ at high concentrations may compete with crucial ligand (bis-sulfoxide) binding and inhibit catalysis. Kinetic studies reveal an inverse relationship between the reaction rate and the concentration of BQ, suggesting that BQ is acting as a ligand for Pd(II) which results in an inhibitory effect on catalysis.

References

  1. J Am Chem Soc. 2001 Aug 1;123(30):7475-6 - PubMed
  2. J Am Chem Soc. 2001 Aug 8;123(31):7725-6 - PubMed
  3. J Org Chem. 1996 May 31;61(11):3584-3585 - PubMed
  4. J Am Chem Soc. 2002 Feb 20;124(7):1307-15 - PubMed
  5. J Am Chem Soc. 2004 Feb 11;126(5):1346-7 - PubMed
  6. Bioorg Med Chem Lett. 2004 Jun 21;14(12):3103-7 - PubMed
  7. Angew Chem Int Ed Engl. 2004 Jun 28;43(26):3400-20 - PubMed
  8. Org Biomol Chem. 2004 Sep 21;2(18):2551-4 - PubMed
  9. Org Lett. 2005 Jan 20;7(2):223-6 - PubMed
  10. J Am Chem Soc. 2005 Mar 9;127(9):2868-9 - PubMed
  11. J Am Chem Soc. 2005 May 18;127(19):6970-1 - PubMed
  12. J Am Chem Soc. 2005 May 25;127(20):7308-9 - PubMed
  13. Angew Chem Int Ed Engl. 2006 Jan 9;45(3):481-5 - PubMed
  14. J Am Chem Soc. 2006 Jan 11;128(1):78-9 - PubMed
  15. J Am Chem Soc. 2006 Jul 19;128(28):9032-3 - PubMed
  16. J Am Chem Soc. 2007 Jun 13;129(23):7274-6 - PubMed
  17. Science. 2007 Nov 2;318(5851):783-7 - PubMed
  18. J Am Chem Soc. 2008 Mar 19;130(11):3316-8 - PubMed
  19. Angew Chem Int Ed Engl. 2008;47(19):3506-23 - PubMed
  20. Angew Chem Int Ed Engl. 2008;47(25):4733-6 - PubMed
  21. Angew Chem Int Ed Engl. 2008;47(34):6448-51 - PubMed
  22. J Am Chem Soc. 2008 Oct 29;130(43):14090-1 - PubMed
  23. Science. 2009 Apr 10;324(5924):238-41 - PubMed
  24. Nature. 2009 Jun 11;459(7248):824-8 - PubMed
  25. J Am Chem Soc. 2009 Jul 22;131(28):9651-3 - PubMed
  26. J Am Chem Soc. 2009 Aug 26;131(33):11707-11 - PubMed
  27. J Am Chem Soc. 2009 Aug 26;131(33):11701-6 - PubMed
  28. Chem Rev. 2010 Feb 10;110(2):932-48 - PubMed
  29. J Am Chem Soc. 2009 Oct 21;131(41):14654-5 - PubMed
  30. Chemistry. 2009 Oct 26;15(42):11078-82 - PubMed
  31. Angew Chem Int Ed Engl. 2009;48(48):9038-49 - PubMed
  32. Science. 2010 Jan 29;327(5965):566-71 - PubMed
  33. Org Lett. 2010 Mar 19;12(6):1372-4 - PubMed
  34. Chem Commun (Camb). 2009 Sep 14;(34):5061-74 - PubMed
  35. J Am Chem Soc. 2010 Sep 1;132(34):11978-87 - PubMed
  36. J Am Chem Soc. 2010 Nov 3;132(43):15116-9 - PubMed
  37. Nat Chem. 2009 Oct;1(7):547-51 - PubMed
  38. J Am Chem Soc. 2011 Sep 28;133(38):14892-5 - PubMed
  39. J Am Chem Soc. 2013 Sep 4;135(35):12990-3 - PubMed
  40. J Am Chem Soc. 2014 Aug 6;136(31):11176-81 - PubMed
  41. Nat Commun. 2015 Jan 12;6:5943 - PubMed
  42. Chem Sci. 2014 Jun 1;5(6):2352-2361 - PubMed
  43. Nat Chem. 2015 Dec;7(12):987-94 - PubMed
  44. Org Process Res Dev. 2015 Nov 20;19(11):1537-1543 - PubMed

Publication Types

Grant support