Display options
Share it on

Front Genet. 2015 Nov 17;6:329. doi: 10.3389/fgene.2015.00329. eCollection 2015.

riboFrame: An Improved Method for Microbial Taxonomy Profiling from Non-Targeted Metagenomics.

Frontiers in genetics

Matteo Ramazzotti, Luisa Berná, Claudio Donati, Duccio Cavalieri

Affiliations

  1. Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze Firenze, Italy.
  2. Unidad de Biología Molecular, Institut Pasteur de Montevideo Montevideo, Uruguay.
  3. Centre for Research and Innovation, Fondazione Edmund Mach San Michele all'Adige, Italy.

PMID: 26635865 PMCID: PMC4646959 DOI: 10.3389/fgene.2015.00329

Abstract

Non-targeted metagenomics offers the unprecedented possibility of simultaneously investigate the microbial profile and the genetic capabilities of a sample by a direct analysis of its entire DNA content. The assessment of the microbial taxonomic composition is frequently obtained by mapping reads to genomic databases that, although growing, are still limited and biased. Here we present riboFrame, a novel procedure for microbial profiling based on the identification and classification of 16S rDNA sequences in non-targeted metagenomics datasets. Reads overlapping the 16S rDNA genes are identified using Hidden Markov Models and a taxonomic assignment is obtained by naïve Bayesian classification. All reads identified as ribosomal are coherently positioned in the 16S rDNA gene, allowing the use of the topology of the gene (i.e., the secondary structure and the location of variable regions) to guide the abundance analysis. We tested and verified the effectiveness of our method on simulated ribosomal data, on simulated metagenomes and on a real dataset. riboFrame exploits the taxonomic potentialities of the 16S rDNA gene in the context of non-targeted metagenomics, giving an accurate perspective on the microbial profile in metagenomic samples.

Keywords: 16S rDNA gene; community profiling; metagenomics; non-targeted approach; short reads; variable region

References

  1. Genome Res. 2009 Jul;19(7):1141-52 - PubMed
  2. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  3. Nat Methods. 2012 Jun 10;9(8):811-4 - PubMed
  4. PLoS One. 2008 Oct 08;3(10):e3373 - PubMed
  5. Methods Enzymol. 2013;531:465-85 - PubMed
  6. J Microbiol Methods. 2007 May;69(2):330-9 - PubMed
  7. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6 - PubMed
  8. J Microbiol Methods. 2010 Nov;83(2):250-3 - PubMed
  9. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088-90 - PubMed
  10. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  11. Genome Res. 2011 Mar;21(3):494-504 - PubMed
  12. Brief Bioinform. 2012 Nov;13(6):696-710 - PubMed
  13. Bioinformatics. 2010 Mar 1;26(5):589-95 - PubMed
  14. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 - PubMed
  15. Infect Drug Resist. 2013 Oct 08;6:115-23 - PubMed
  16. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 - PubMed
  17. Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5 - PubMed
  18. ISME J. 2010 May;4(5):642-7 - PubMed
  19. J Microbiol. 2011 Aug;49(4):689-91 - PubMed
  20. PLoS One. 2013;8(1):e53608 - PubMed
  21. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  22. Antonie Van Leeuwenhoek. 2011 Oct;100(3):471-5 - PubMed
  23. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  24. BMC Genomics. 2014 Jan 18;15:37 - PubMed
  25. Bioinformatics. 2009 May 15;25(10):1335-7 - PubMed
  26. Annu Rev Genet. 2004;38:525-52 - PubMed
  27. PLoS One. 2012;7(10):e47075 - PubMed
  28. Genome Biol. 2011;12(5):R44 - PubMed

Publication Types