Display options
Share it on

Metabolites. 2016 Jan 08;6(1). doi: 10.3390/metabo6010002.

Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.

Metabolites

Kevin Purves, Lynsey Macintyre, Debra Brennan, Guðmundur Ó Hreggviðsson, Eva Kuttner, Margrét E Ásgeirsdóttir, Louise C Young, David H Green, Ruangelie Edrada-Ebel, Katherine R Duncan

Affiliations

  1. Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK. [email protected].
  2. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK. [email protected].
  3. Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK. [email protected].
  4. Matis, Vinlandsleið 12, Reykjavik 113, Iceland. [email protected].
  5. Faculty of Life and Environmental Sciences, University of Iceland, 101 Reykjavik, Iceland. [email protected].
  6. Matis, Vinlandsleið 12, Reykjavik 113, Iceland. [email protected].
  7. Matis, Vinlandsleið 12, Reykjavik 113, Iceland. [email protected].
  8. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK. [email protected].
  9. Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK. [email protected].
  10. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK. [email protected].
  11. Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK. [email protected].

PMID: 26761036 PMCID: PMC4812331 DOI: 10.3390/metabo6010002

Abstract

The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

Keywords: Antarctica; bacteria; bioprospecting; molecular networking; secondary metabolites

References

  1. Curr Opin Microbiol. 2014 Jun;19:120-9 - PubMed
  2. Nat Biotechnol. 2012 Oct;30(10):918-20 - PubMed
  3. Nat Protoc. 2007;2(10):2366-82 - PubMed
  4. J Org Chem. 2011 Aug 19;76(16):6542-7 - PubMed
  5. J Antibiot (Tokyo). 2005 Jan;58(1):1-26 - PubMed
  6. ACS Chem Biol. 2014 Jan 17;9(1):301-9 - PubMed
  7. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2611-20 - PubMed
  8. Mol Cancer Ther. 2005 Feb;4(2):333-42 - PubMed
  9. J Antibiot (Tokyo). 2014 Jan;67(1):105-12 - PubMed
  10. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  11. Nat Prod Rep. 2001 Aug;18(4):417-30 - PubMed
  12. Environ Microbiol. 2008 Dec;10(12):3388-403 - PubMed
  13. Anticancer Res. 2009 Jan;29(1):427-33 - PubMed
  14. Bioinformatics. 2012 Jun 15;28(12):1647-9 - PubMed
  15. J Org Chem. 2005 Aug 5;70(16):6196-203 - PubMed
  16. J Antibiot (Tokyo). 2004 Apr;57(4):271-9 - PubMed
  17. Bioinformatics. 2011 Feb 1;27(3):431-2 - PubMed
  18. Anal Chem. 2015 Jul 7;87(13):6520-6 - PubMed
  19. Biofouling. 2011 May;27(5):519-28 - PubMed
  20. J Biosci Bioeng. 2015 Mar;119(3):323-30 - PubMed
  21. Appl Environ Microbiol. 2002 Oct;68(10):5005-11 - PubMed
  22. J Nat Prod. 2008 Sep;71(9):1530-7 - PubMed
  23. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1743-52 - PubMed
  24. J Nat Prod. 1996 Jul;59(7):710-6 - PubMed
  25. Philos Trans R Soc Lond B Biol Sci. 2007 Dec 29;362(1488):2259-71 - PubMed
  26. Extremophiles. 2006 Jun;10(3):181-9 - PubMed
  27. Environ Microbiol. 2005 Jul;7(7):1039-48 - PubMed
  28. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4407-16 - PubMed
  29. J Bacteriol. 1991 Jan;173(2):697-703 - PubMed
  30. Antonie Van Leeuwenhoek. 2008 Mar;93(3):241-8 - PubMed
  31. Nat Prod Rep. 2007 Feb;24(1):31-86 - PubMed
  32. Nat Rev Drug Discov. 2013 May;12(5):371-87 - PubMed
  33. Nat Chem Biol. 2011 Oct 09;7(11):794-802 - PubMed
  34. Microb Ecol. 2013 Jul;66(1):189-99 - PubMed
  35. Mar Drugs. 2012 Oct;10(10):2300-11 - PubMed
  36. Microb Ecol. 2010 Oct;60(3):592-8 - PubMed
  37. Mar Drugs. 2008 Jan 23;6(1):12-24 - PubMed
  38. Nat Rev Microbiol. 2012 Sep;10(9):641-54 - PubMed
  39. Mar Drugs. 2013 Mar 28;11(4):1071-86 - PubMed
  40. Environ Microbiol. 2006 Nov;8(11):1881-8 - PubMed
  41. J Microbiol. 2011 Dec;49(6):920-6 - PubMed
  42. Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):E1130-9 - PubMed
  43. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3757-62 - PubMed
  44. Antonie Van Leeuwenhoek. 2009 Feb;95(2):111-20 - PubMed
  45. FEMS Microbiol Ecol. 2014 Aug;89(2):426-41 - PubMed
  46. J Ind Microbiol Biotechnol. 2015 Jan;42(1):57-72 - PubMed
  47. Mar Drugs. 2014 Feb 13;12(2):899-925 - PubMed
  48. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  49. Sci Rep. 2015 Aug 04;5:12856 - PubMed
  50. Biologist (London). 2000 Apr;47(2):61-4 - PubMed
  51. Nat Chem Biol. 2011 Dec 15;8(1):2-5 - PubMed
  52. Microbiol Mol Biol Rev. 2000 Sep;64(3):548-72 - PubMed
  53. PLoS Comput Biol. 2010 Jun 03;6(6):e1000796 - PubMed
  54. Mar Drugs. 2014 Jun 05;12(6):3416-48 - PubMed
  55. ISME J. 2009 Oct;3(10):1193-203 - PubMed
  56. Chem Biol. 2015 Apr 23;22(4):460-71 - PubMed
  57. FEMS Microbiol Lett. 1994 Feb 15;116(2):189-93 - PubMed
  58. Mol Biosyst. 2012 Oct;8(10):2535-44 - PubMed
  59. J Proteome Res. 2008 Jan;7(1):113-22 - PubMed
  60. Nat Rev Microbiol. 2011 Nov 28;10(1):39-50 - PubMed
  61. Environ Microbiol. 2016 Feb;18(2):384-400 - PubMed
  62. PLoS One. 2010 Mar 05;5(3):e9554 - PubMed
  63. Proteomics. 2010 Mar;10(6):1150-9 - PubMed
  64. Nature. 1962 Aug 18;195:643-6 - PubMed
  65. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12115-20 - PubMed
  66. Springerplus. 2013 Dec;2(1):127 - PubMed
  67. Nat Rev Microbiol. 2010 Jun;8(6):423-35 - PubMed
  68. Mol Syst Biol. 2005;1:2005.0017 - PubMed
  69. Mar Drugs. 2013 Aug 12;11(8):2846-72 - PubMed
  70. J Nat Prod. 2013 Sep 27;76(9):1686-99 - PubMed
  71. Appl Environ Microbiol. 2007 Feb;73(4):1146-52 - PubMed
  72. Environ Microbiol. 2010 Nov;12(11):2998-3006 - PubMed
  73. Int J Cancer. 2010 Aug 15;127(4):780-90 - PubMed
  74. Antonie Van Leeuwenhoek. 2005 Jan;87(1):29-36 - PubMed
  75. Molecules. 2013 Jun 03;18(6):6455-68 - PubMed
  76. Saline Systems. 2008 Jun 09;4:8 - PubMed
  77. Mar Drugs. 2014 Jun 02;12(6):3323-51 - PubMed
  78. Parasitol Res. 2003 Jun;90 Suppl 2:S55-62 - PubMed
  79. J Am Chem Soc. 2011 Aug 31;133(34):13311-3 - PubMed
  80. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 - PubMed
  81. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12295-300 - PubMed
  82. Antonie Van Leeuwenhoek. 2005 Jan;87(1):11-8 - PubMed
  83. J Ind Microbiol Biotechnol. 2007 Jan;34(1):5-8 - PubMed
  84. BMC Bioinformatics. 2010 Jul 23;11:395 - PubMed
  85. Phytochemistry. 2009 Oct-Nov;70(15-16):1841-9 - PubMed

Publication Types