Display options
Share it on

Front Plant Sci. 2015 Dec 22;6:1132. doi: 10.3389/fpls.2015.01132. eCollection 2015.

N-Glycosylation of Cholera Toxin B Subunit: Serendipity for Novel Plant-Made Vaccines?.

Frontiers in plant science

Nobuyuki Matoba

Affiliations

  1. Department of Pharmacology and Toxicology and Owensboro Cancer Research Program of James Graham Brown Cancer Center, University of Louisville School of Medicine Owensboro, KY, USA.

PMID: 26732492 PMCID: PMC4686596 DOI: 10.3389/fpls.2015.01132

Abstract

The non-toxic B subunit of cholera toxin (CTB) has attracted considerable interests from vaccinologists due to strong mucosal immunomodulatory effects and potential utility as a vaccine scaffold for heterologous antigens. Along with other conventional protein expression systems, various plant species have been used as production hosts for CTB and its fusion proteins. However, it has recently become clear that the protein is N-glycosylated within the endoplasmic reticulum of plant cells-a eukaryotic post-translational modification that is not present in native CTB. While functionally active aglycosylated variants have been successfully engineered to circumvent potential safety and regulatory issues related to glycosylation, this modification may actually provide advantageous characteristics to the protein as a vaccine platform. Based on data from our recent studies, I discuss the unique features of N-glycosylated CTB produced in plants for the development of novel vaccines.

Keywords: C-type lectin receptors; Cholera toxin B subunit; N-glycosylation; plant-made pharmaceutical; subunit vaccine

References

  1. J Mol Biol. 2001 Aug 31;311(5):1001-9 - PubMed
  2. Mol Immunol. 2009 Dec;47(2-3):164-74 - PubMed
  3. Vaccines (Basel). 2015 Jul 24;3(3):579-96 - PubMed
  4. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13584-9 - PubMed
  5. Nature. 2003 Mar 20;422(6929):307-12 - PubMed
  6. Biochim Biophys Acta. 2013 Nov;1833(11):2430-7 - PubMed
  7. Blood Cells Mol Dis. 2014 Dec;53(4):253-60 - PubMed
  8. Trends Microbiol. 2007 May;15(5):211-8 - PubMed
  9. Sci Rep. 2015 Jan 23;5:8003 - PubMed
  10. Annu Rev Biochem. 2004;73:1019-49 - PubMed
  11. Scand J Immunol. 2010 Jan;71(1):1-11 - PubMed
  12. Curr Med Chem. 2014;21(30):3405-18 - PubMed
  13. Viruses. 2014 Mar 14;6(3):1294-316 - PubMed
  14. Viruses. 2011 Oct;3(10):1909-32 - PubMed
  15. Vaccine. 2006 Jun 5;24(23):5047-55 - PubMed
  16. Mol Genet Metab. 2014 May;112(1):1-8 - PubMed
  17. Nat Rev Immunol. 2012 Jul 25;12(8):592-605 - PubMed
  18. Curr Opin Struct Biol. 2015 Oct;34:26-34 - PubMed
  19. PLoS One. 2010 Dec 22;5(12):e15559 - PubMed
  20. Plant Biotechnol J. 2013 Sep;11(7):799-808 - PubMed
  21. Mol Immunol. 2013 Sep;55(2):143-5 - PubMed
  22. Chromatographia. 2015;78(5-6):321-333 - PubMed
  23. Eur J Immunol. 1997 Sep;27(9):2426-35 - PubMed
  24. Plant Biotechnol J. 2009 Feb;7(2):129-45 - PubMed
  25. Biomed Res Int. 2013;2013:562924 - PubMed
  26. Curr Opin Biotechnol. 2014 Dec;30:95-100 - PubMed
  27. Aliment Pharmacol Ther. 2010 Feb 1;31(3):387-95 - PubMed
  28. Vaccine. 2011 Nov 8;29(48):8802-26 - PubMed
  29. Expert Opin Biol Ther. 2015;15(10):1501-16 - PubMed
  30. J Biotechnol. 2006 Dec 15;127(1):95-108 - PubMed
  31. Biochim Biophys Acta. 2005 Nov 15;1726(2):121-37 - PubMed
  32. Vaccine. 2014 Oct 21;32(46):6098-106 - PubMed
  33. Toxins (Basel). 2015 Mar 20;7(3):974-96 - PubMed
  34. Carbohydr Res. 2014 May 7;389:115-22 - PubMed
  35. Clin Exp Immunol. 2004 Jul;137(1):201-8 - PubMed
  36. Bioconjug Chem. 2007 Sep-Oct;18(5):1547-54 - PubMed
  37. Glycoconj J. 2010 Feb;27(2):211-25 - PubMed
  38. J Drug Deliv. 2013;2013:869718 - PubMed
  39. PLoS Negl Trop Dis. 2013;7(3):e2046 - PubMed
  40. Annu Rev Biochem. 2011;80:71-99 - PubMed
  41. Adv Drug Deliv Rev. 2013 Aug;65(9):1271-81 - PubMed
  42. Plant Biotechnol J. 2015 Feb;13(2):222-34 - PubMed
  43. Chem Soc Rev. 2013 Jun 7;42(11):4543-56 - PubMed
  44. Nat Chem Biol. 2007 Jun;3(6):313-20 - PubMed

Publication Types