Display options
Share it on

Nat Commun. 2016 Jan 25;7:10475. doi: 10.1038/ncomms10475.

Single-ion adsorption and switching in carbon nanotubes.

Nature communications

Adam W Bushmaker, Vanessa Oklejas, Don Walker, Alan R Hopkins, Jihan Chen, Stephen B Cronin

Affiliations

  1. Physical Sciences Laboratories, The Aerospace Corporation, 355 S. Douglas Street, El Segundo, California 90245, USA.
  2. Department of Electrical Engineering, The University of Southern California, 3601 Watt Way, Los Angeles, California 90089, USA.

PMID: 26805462 PMCID: PMC4737755 DOI: 10.1038/ncomms10475

Abstract

Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.

References

  1. ACS Nano. 2010 Sep 28;4(9):5095-100 - PubMed
  2. Phys Rev Lett. 2007 Nov 30;99(22):226104 - PubMed
  3. Phys Rev Lett. 2005 Oct 7;95(15):155505 - PubMed
  4. J Am Chem Soc. 2008 Nov 5;130(44):14392-3 - PubMed
  5. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  6. J Phys Condens Matter. 2009 Sep 30;21(39):395502 - PubMed
  7. ACS Nano. 2011 Oct 25;5(10):7848-57 - PubMed
  8. Nature. 2002 Jun 13;417(6890):722-5 - PubMed
  9. Phys Rev Lett. 2009 Mar 13;102(10):105501 - PubMed
  10. Nano Lett. 2008 Jan;8(1):189-94 - PubMed
  11. Phys Rev Lett. 2001 Sep 3;87(10):106801 - PubMed
  12. Nano Lett. 2009 Aug;9(8):2862-6 - PubMed
  13. Phys Rev Lett. 2000 Mar 27;84(13):2941-4 - PubMed
  14. Nano Lett. 2007 Dec;7(12):3618-22 - PubMed
  15. Nat Mater. 2007 Sep;6(9):652-5 - PubMed
  16. Nano Lett. 2007 Apr;7(4):910-3 - PubMed
  17. Nat Nanotechnol. 2011 Mar;6(3):156-61 - PubMed
  18. Nat Nanotechnol. 2011 Feb;6(2):126-32 - PubMed
  19. Nature. 2004 Sep 16;431(7006):284-7 - PubMed
  20. Nat Mater. 2005 Oct;4(10):745-9 - PubMed
  21. Science. 2001 Jun 22;292(5525):2303-7 - PubMed
  22. Science. 2000 Jan 28;287(5453):622-5 - PubMed
  23. Nat Nanotechnol. 2008 Sep;3(9):533-7 - PubMed
  24. Science. 2000 Dec 22;290(5500):2282-5 - PubMed

Publication Types