Display options
Share it on

Front Microbiol. 2015 Dec 16;6:1409. doi: 10.3389/fmicb.2015.01409. eCollection 2015.

Similar Microbial Communities Found on Two Distant Seafloor Basalts.

Frontiers in microbiology

Esther Singer, Lauren S Chong, John F Heidelberg, Katrina J Edwards

Affiliations

  1. Joint Genome Institute, Walnut Creek CA, USA.
  2. Department of Earth Sciences, University of Southern California, Los Angeles CA, USA.
  3. Department of Marine Environmental Biology, University of Southern California, Los Angeles CA, USA.
  4. Department of Earth Sciences, University of Southern California, Los AngelesCA, USA; Department of Marine Environmental Biology, University of Southern California, Los AngelesCA, USA.

PMID: 26733957 PMCID: PMC4679871 DOI: 10.3389/fmicb.2015.01409

Abstract

The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

Keywords: metagenome; microbe-rock interactions; oceanic crust; seafloor basalt; thaumarchaeota

References

  1. Bioinformatics. 2012 Jul 15;28(14):1823-9 - PubMed
  2. Environ Microbiol. 2007 Oct;9(10):2539-50 - PubMed
  3. Front Microbiol. 2012 Dec 05;3:403 - PubMed
  4. PeerJ. 2014 Jan 09;2:e243 - PubMed
  5. FEMS Microbiol Lett. 2008 May;282(2):182-7 - PubMed
  6. Int J Syst Bacteriol. 1999 Apr;49 Pt 2:583-9 - PubMed
  7. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D344-8 - PubMed
  8. Appl Environ Microbiol. 2003 May;69(5):2906-13 - PubMed
  9. Appl Environ Microbiol. 2011 Aug;77(15):5445-57 - PubMed
  10. PLoS One. 2011 Mar 09;6(3):e17288 - PubMed
  11. Methods Enzymol. 2013;531:465-85 - PubMed
  12. Appl Environ Microbiol. 2014 Aug;80(16):4854-64 - PubMed
  13. Nat Methods. 2010 Dec;7(12):943-4 - PubMed
  14. ISME J. 2011 Jun;5(6):1038-47 - PubMed
  15. ISME J. 2012 Oct;6(10):1966-77 - PubMed
  16. Appl Environ Microbiol. 2012 Nov;78(21):7501-10 - PubMed
  17. Biochim Biophys Acta. 1999 Aug 5;1428(2-3):446-54 - PubMed
  18. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8420-5 - PubMed
  19. Biol Bull. 2003 Apr;204(2):180-5 - PubMed
  20. Appl Environ Microbiol. 2015 Sep 1;81(17):5927-37 - PubMed
  21. Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):2096-101 - PubMed
  22. Front Microbiol. 2015 Sep 07;6:904 - PubMed
  23. PLoS One. 2011;6(9):e25386 - PubMed
  24. Nucleic Acids Res. 2008 Jan;36(Database issue):D534-8 - PubMed
  25. Environ Microbiol. 2005 Oct;7(10):1525-34 - PubMed
  26. J Bacteriol. 1982 Mar;149(3):852-63 - PubMed
  27. Nature. 2008 May 29;453(7195):653-6 - PubMed
  28. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 - PubMed
  29. FEMS Microbiol Ecol. 2003 Apr 1;43(3):393-409 - PubMed
  30. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  31. BMC Bioinformatics. 2008 Sep 19;9:386 - PubMed
  32. Bioinformatics. 2011 Mar 15;27(6):863-4 - PubMed
  33. FEMS Microbiol Ecol. 2004 Nov 1;50(3):213-30 - PubMed
  34. J Bacteriol. 1998 Jun;180(11):2975-82 - PubMed
  35. Nucleic Acids Res. 2007;35(9):3100-8 - PubMed
  36. Environ Microbiol. 2012 Dec;14(12):3146-58 - PubMed
  37. Biochem Soc Trans. 2012 Dec 1;40(6):1261-7 - PubMed
  38. Stand Genomic Sci. 2014 Jan 02;9(3):1259-74 - PubMed
  39. J Mol Biol. 2008 Oct 10;382(3):692-707 - PubMed
  40. Environ Microbiol. 2009 Jan;11(1):86-98 - PubMed
  41. Int J Syst Bacteriol. 1998 Jul;48 Pt 3:913-9 - PubMed
  42. Science. 2007 Feb 16;315(5814):998-1000 - PubMed
  43. Science. 2003 Jan 3;299(5603):120-3 - PubMed
  44. Environ Microbiol. 2013 Nov;15(11):3087-107 - PubMed
  45. Nat Methods. 2015 Jan;12(1):59-60 - PubMed
  46. Int J Syst Evol Microbiol. 2012 Jan;62(Pt 1):106-11 - PubMed
  47. ISME J. 2009 Feb;3(2):231-42 - PubMed
  48. Int J Syst Evol Microbiol. 2011 Jun;61(Pt 6):1239-45 - PubMed
  49. Nature. 2000 Jan 6;403(6765):71-4 - PubMed
  50. Int J Syst Evol Microbiol. 2013 Jun;63(Pt 6):2216-22 - PubMed
  51. Nucleic Acids Res. 2012 Jan;40(Database issue):D130-5 - PubMed

Publication Types