Display options
Share it on

Am J Cancer Res. 2015 Oct 15;5(11):3325-38. eCollection 2015.

Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and β-catenin signaling molecules.

American journal of cancer research

Mudit Vaid, Tripti Singh, Ram Prasad, John C Kappes, Santosh K Katiyar

Affiliations

  1. Department of Dermatology, University of Alabama at Birmingham Birmingham, AL 35294, USA.
  2. Department of Dermatology, University of Alabama at BirminghamBirmingham, AL 35294, USA; Birmingham Veterans Affairs Medical CenterBirmingham, AL 35233, USA.
  3. Department of Medicine, University of Alabama at BirminghamBirmingham, AL 35294, USA; Department of Pathology, University of Alabama at BirminghamBirmingham, AL 35294, USA; Department of Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL 35294, USA; Birmingham Veterans Affairs Medical CenterBirmingham, AL 35233, USA.
  4. Department of Dermatology, University of Alabama at BirminghamBirmingham, AL 35294, USA; Department of Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL 35294, USA; Birmingham Veterans Affairs Medical CenterBirmingham, AL 35233, USA.

PMID: 26807314 PMCID: PMC4697680

Abstract

Melanoma is a highly aggressive form of skin cancer and a leading cause of death from skin diseases mainly due to its propensity to metastasis. Due to metastatic tendency, melanoma is often associated with activation of Wnt/β-catenin signaling mechanism. Blocking β-catenin activation may be a good strategy to block melanoma-associated mortality. We have shown earlier that grape seed proanthocyanidins (GSPs) inhibit melanoma cell migration via targeting cyclooxygenase-2 (COX-2) overexpression. Here we explored further whether inhibition of inflammatory mediators-mediated activation of β-catenin by GSPs is associated with the inhibition of melanoma cell migration. Our study revealed that PGE2 receptors (EP2 and EP4) agonists promote melanoma cell migration while PGE2 receptor antagonist suppressed the migration capacity of melanoma cells. GSPs treatment inhibit butaprost (EP2 agonist) or Cay10580 (EP4 agonist) induced migration of melanoma cells. Western blot analysis revealed that GSPs reduced cellular accumulation of β-catenin, and decreased the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and MITF, downstream targets of β-catenin in melanoma cells. GSPs also reduced the protein expressions of PI3K and p-Akt in the same set of experiment. To verify that β-catenin is a specific molecular target of GSPs, we compared the effect of GSPs on cell migration of β-catenin-activated (Mel1241) and β-catenin-inactivated (Mel1011) melanoma cells. GSPs inhibit cell migration of Mel1241 cells but not of Mel1011 cells. Additionally, in vivo bioluminescence imaging data indicate that dietary administration of GSPs (0.5%, w/w) in supplementation with AIN76A control diet inhibited the migration/extravasation of intravenously injected melanoma cells in lungs of immune-compromised nude mice, and that this effect of GSPs was associated with an inhibitory effect on the activation of β-catenin and its downstream targets, such as MMPs, in lungs as a target organ.

Keywords: Grape seed proanthocyanidins; PGE2 receptors; bioluminescence imaging; cell migration; melanoma; metastasis; prostaglandin E2; β-catenin

References

  1. Cancer Res. 2010 Jul 15;70(14):5963-73 - PubMed
  2. Carcinogenesis. 2003 Aug;24(8):1379-88 - PubMed
  3. Parasit Vectors. 2014 Mar 03;7:89 - PubMed
  4. Curr Biol. 1999 Feb 25;9(4):207-10 - PubMed
  5. J Am Acad Dermatol. 1999 Jan;40(1):35-42 - PubMed
  6. Mod Pathol. 2002 Apr;15(4):454-61 - PubMed
  7. Pharm Res. 2010 Jun;27(6):1092-102 - PubMed
  8. J Natl Cancer Inst. 2004 Aug 4;96(15):1161-70 - PubMed
  9. Am J Pathol. 1999 Feb;154(2):325-9 - PubMed
  10. Nat Biotechnol. 2004 May;22(5):589-94 - PubMed
  11. World J Gastroenterol. 2005 Apr 14;11(14):2117-23 - PubMed
  12. Cancer Res. 2006 May 1;66(9):4734-41 - PubMed
  13. Mol Biol Cell. 2005 Sep;16(9):4386-97 - PubMed
  14. Cell. 2002 Mar 22;108(6):837-47 - PubMed
  15. Curr Opin Cell Biol. 1997 Oct;9(5):683-90 - PubMed
  16. Photochem Photobiol. 2008 Mar-Apr;84(2):528-36 - PubMed
  17. Digestion. 2002;66(3):131-44 - PubMed
  18. J Biol Chem. 2002 Dec 27;277(52):50828-33 - PubMed
  19. Cancer Lett. 2008 Oct 8;269(2):378-87 - PubMed
  20. Carcinogenesis. 2009 Mar;30(3):520-8 - PubMed
  21. Mol Carcinog. 2012 Sep;51(9):734-45 - PubMed
  22. J Virol. 2011 Jul;85(14):6941-54 - PubMed
  23. PLoS One. 2011;6(7):e23000 - PubMed
  24. Mol Carcinog. 2005 Apr;42(4):213-21 - PubMed
  25. Nat Biotechnol. 1997 Sep;15(9):871-5 - PubMed
  26. Int J Cancer. 2004 Jan 10;108(2):321-6 - PubMed
  27. Cell. 2005 Dec 2;123(5):889-901 - PubMed
  28. Science. 1997 Mar 21;275(5307):1790-2 - PubMed
  29. Life Sci. 2003 Dec 5;74(2-3):143-53 - PubMed
  30. Cell. 2005 Dec 2;123(5):903-15 - PubMed
  31. Science. 2005 Dec 2;310(5753):1504-10 - PubMed
  32. PLoS One. 2011;6(6):e21539 - PubMed
  33. Drug Resist Updat. 2004 Jun;7(3):169-84 - PubMed
  34. Verh Dtsch Ges Pathol. 2000;84:175-81 - PubMed
  35. PLoS One. 2011;6(10):e25224 - PubMed
  36. Photochem Photobiol. 1996 Apr;63(4):356-7 - PubMed

Publication Types

Grant support