Display options
Share it on

Stem Cells Int. 2016;2016:5309484. doi: 10.1155/2016/5309484. Epub 2015 Dec 29.

Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells.

Stem cells international

Kewalin Inthanon, Donraporn Daranarong, Pimwalan Techaikool, Winita Punyodom, Vorathep Khaniyao, Audrey M Bernstein, Weerah Wongkham

Affiliations

  1. The Human and Animal Cell Technology Research Unit, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
  2. Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
  3. The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand.
  4. Departments of Ophthalmology and Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1183, New York, NY 10029, USA.

PMID: 26839562 PMCID: PMC4709783 DOI: 10.1155/2016/5309484

Abstract

Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

References

  1. Biomacromolecules. 2005 Jul-Aug;6(4):2096-105 - PubMed
  2. PLoS One. 2011;6(7):e22879 - PubMed
  3. J Biomed Mater Res A. 2003 Dec 15;67(4):1374-83 - PubMed
  4. Biomaterials. 2004 Jun;25(14):2721-30 - PubMed
  5. World J Stem Cells. 2009 Dec 31;1(1):55-66 - PubMed
  6. Biomaterials. 2011 Feb;32(6):1583-90 - PubMed
  7. Stem Cells. 2004;22(7):1330-7 - PubMed
  8. Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):5953-7 - PubMed
  9. Biol Cell. 2011 Apr;103(4):197-208 - PubMed
  10. Eur J Heart Fail. 2009 Feb;11(2):147-53 - PubMed
  11. Mol Med Rep. 2013 Oct;8(4):1169-82 - PubMed
  12. Cytotechnology. 2013 Jan;65(1):119-34 - PubMed
  13. Neural Regen Res. 2013 Jul 5;8(19):1783-92 - PubMed
  14. Biosci Biotechnol Biochem. 2005 Feb;69(2):403-5 - PubMed
  15. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011 Apr;28(2):305-9 - PubMed
  16. J Biomed Mater Res A. 2012 Mar;100(3):632-45 - PubMed
  17. Curr Stem Cell Res Ther. 2013 Mar;8(2):144-55 - PubMed
  18. Nat Mater. 2014 Jun;13(6):558-69 - PubMed
  19. Cell Biol Int. 2011 Mar;35(3):221-6 - PubMed
  20. J Biomed Mater Res A. 2005 Jul 1;74(1):23-31 - PubMed
  21. Int J Mol Sci. 2010 May 20;11(5):2200-11 - PubMed
  22. Arthritis Rheum. 2003 Feb;48(2):418-29 - PubMed
  23. Biomaterials. 2008 Sep;29(26):3574-82 - PubMed
  24. Acta Biochim Biophys Sin (Shanghai). 2007 Aug;39(8):549-59 - PubMed
  25. J Biomater Sci Polym Ed. 2014 Jul;25(10):1028-44 - PubMed
  26. Biomaterials. 2005 Oct;26(30):5999-6008 - PubMed
  27. Blood. 2007 Aug 15;110(4):1362-9 - PubMed
  28. Science. 2009 Jun 26;324(5935):1673-7 - PubMed
  29. Int J Mol Med. 2006 Dec;18(6):1089-96 - PubMed
  30. J Biosci Bioeng. 2005 Dec;100(6):667-71 - PubMed
  31. J Biomater Sci Polym Ed. 2006;17(12):1359-74 - PubMed
  32. Macromol Biosci. 2007 Mar 8;7(3):354-63 - PubMed
  33. Islets. 2010 Mar-Apr;2(2):112-20 - PubMed
  34. Biomed Res Int. 2013;2013:916136 - PubMed
  35. Biomaterials. 2004 Dec;25(28):5947-54 - PubMed
  36. J Pharm Bioallied Sci. 2011 Jan;3(1):39-59 - PubMed
  37. PLoS One. 2012;7(7):e42271 - PubMed
  38. Chin Med J (Engl). 2005 Dec 5;118(23):1987-93 - PubMed
  39. BMC Biotechnol. 2008 Apr 11;8:39 - PubMed
  40. Mol Cells. 2013 May;35(5):436-43 - PubMed
  41. Int J Mol Sci. 2013 May 31;14(6):11692-712 - PubMed
  42. J Tissue Eng Regen Med. 2014 Dec;8(12):937-45 - PubMed
  43. Biomaterials. 2009 Jan;30(3):354-62 - PubMed
  44. Adv Healthc Mater. 2012 Jan 11;1(1):10-25 - PubMed
  45. Int J Mol Sci. 2013 Jan 16;14(1):1870-89 - PubMed
  46. J Biomater Sci Polym Ed. 2009;20(3):325-39 - PubMed
  47. FASEB J. 1996 Jan;10(1):75-83 - PubMed
  48. Arch Pharm Res. 2001 Feb;24(1):69-73 - PubMed
  49. Macromol Rapid Commun. 2011 Nov 1;32(21):1699-703 - PubMed
  50. PPAR Res. 2010;2010:null - PubMed
  51. J Cell Biochem. 2006 Dec 1;99(5):1285-97 - PubMed
  52. Curr Med Chem. 2005;12(17):2011-20 - PubMed
  53. Curr Stem Cell Res Ther. 2013 Jan;8(1):46-59 - PubMed
  54. Artif Organs. 2007 Jan;31(1):13-22 - PubMed
  55. Acta Biomater. 2009 Oct;5(8):3007-20 - PubMed
  56. Biomaterials. 2006 Aug;27(22):4079-86 - PubMed

Publication Types

Grant support