Display options
Share it on

Front Hum Neurosci. 2016 Jan 05;9:690. doi: 10.3389/fnhum.2015.00690. eCollection 2015.

The Effects of Repeat Testing, Malingering, and Traumatic Brain Injury on Computerized Measures of Visuospatial Memory Span.

Frontiers in human neuroscience

David L Woods, John M Wyma, Timothy J Herron, E W Yund

Affiliations

  1. Human Cognitive Neurophysiology Laboratory, Veterans Affairs Northern California Health Care System, Martinez, CAUSA; Department of Neurology, University of California, Davis, Sacramento, CAUSA; Center for Neuroscience, University of California, Davis, Davis, CAUSA; Center for Mind and Brain, University of California, Davis, Davis, CAUSA.
  2. Human Cognitive Neurophysiology Laboratory, Veterans Affairs Northern California Health Care System, Martinez, CA USA.

PMID: 26779001 PMCID: PMC4700270 DOI: 10.3389/fnhum.2015.00690

Abstract

Spatial span tests (SSTs) such as the Corsi Block Test (CBT) and the SST of the Wechsler Memory Scale are widely used to assess deficits in spatial working memory. We conducted three experiments to evaluate the test-retest reliability and clinical sensitivity of a new computerized spatial span test (C-SST) that incorporates psychophysical methods to improve the precision of spatial span measurement. In Experiment 1, we analyzed C-SST test-retest reliability in 49 participants who underwent three test sessions at weekly intervals. Intraclass correlation coefficients (ICC) were higher for a psychophysically derived mean span (MnS) metric (0.83) than for the maximal span and total correct metrics used in traditional spatial-span tests. Response times (ReTs) also showed high ICCs (0.93) that correlated negatively with MnS scores and correlated positively with response-time latencies from other tests of processing speed. Learning effects were insignificant. Experiment 2 examined the performance of Experiment 1 participants when instructed to feign symptoms of traumatic brain injury (TBI): 57% showed abnormal MnS z-scores. A MnS z-score cutoff of 3.0 correctly classified 36% of simulated malingerers and 91% of the subgroup of 11 control participants with abnormal spans. Malingerers also made more substitution errors than control participants with abnormal spans (sensitivity = 43%, specificity = 91%). In addition, malingerers showed no evidence of ReT slowing, in contrast to significant abnormalities seen on other malingered tests of processing speed. As a result, differences between ReT z-scores and z-scores on other processing speed tests showed very high sensitivity and specificity in distinguishing malingering and control participants with either normal or abnormal spans. Experiment 3 examined C-SST performance in a group of patients with predominantly mild TBI: neither MnS nor ReT z-scores showed significant group-level abnormalities. The C-SST improves the reliability and sensitivity of spatial span testing, can accurately detect malingering, and shows that visuospatial working memory is largely preserved in patients with predominantly mild TBI.

Keywords: computer; concussion; digit span; feigning; head injury; reaction time; reliability

References

  1. PLoS One. 2015 Jun 10;10(6):e0124345 - PubMed
  2. Front Hum Neurosci. 2015 Nov 24;9:595 - PubMed
  3. Arch Clin Neuropsychol. 2009 Dec;24(8):729-39 - PubMed
  4. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2011 Jan;18(1):56-63 - PubMed
  5. Neuropsychology. 2014 May;28(3):347-52 - PubMed
  6. Psychiatry Res. 2002 Jul 31;110(3):259-71 - PubMed
  7. Isr J Psychiatry Relat Sci. 2006;43(2):112-8 - PubMed
  8. Memory. 2016 Sep;24(8):1142-55 - PubMed
  9. Front Hum Neurosci. 2015 Nov 09;9:540 - PubMed
  10. Appl Neuropsychol. 2010 Jan;17(1):52-9 - PubMed
  11. Neuropsychologia. 2014 Nov;64:240-51 - PubMed
  12. Restor Neurol Neurosci. 2011;29(5):321-30 - PubMed
  13. Front Hum Neurosci. 2015 May 19;9:288 - PubMed
  14. JAMA. 2006 Aug 2;296(5):519-29 - PubMed
  15. Neurol Sci. 2013 May;34(5):749-54 - PubMed
  16. Percept Mot Skills. 2013 Jun;116(3):929-52 - PubMed
  17. J Psychiatr Res. 2014 Jan;48(1):32-9 - PubMed
  18. Brain Inj. 2010;24(4):598-608 - PubMed
  19. Arch Clin Neuropsychol. 2014 Jun;29(4):364-73 - PubMed
  20. J Acoust Soc Am. 2004 Oct;116(4 Pt 1):2395-405 - PubMed
  21. Front Hum Neurosci. 2015 Mar 26;9:131 - PubMed
  22. Psychol Med. 2011 Dec;41(12):2593-602 - PubMed
  23. J Clin Exp Neuropsychol. 1990 Oct;12(5):715-28 - PubMed
  24. Aphasiology. 2012;26(3-4):338-354 - PubMed
  25. Brain Cogn. 1998 Dec;38(3):317-38 - PubMed
  26. J Clin Exp Neuropsychol. 2011 Aug;33(7):721-34 - PubMed
  27. Assessment. 2007 Mar;14(1):12-21 - PubMed
  28. Psychol Aging. 2002 Jun;17(2):299-320 - PubMed
  29. J Neurol. 2006 Feb;253(2):186-93 - PubMed
  30. J Clin Exp Neuropsychol. 2004 Jun;26(4):539-49 - PubMed
  31. Percept Mot Skills. 1986 Oct;63(2 Pt 2):727-32 - PubMed
  32. J Neuropsychol. 2012 Sep;6(2):212-31 - PubMed
  33. Front Hum Neurosci. 2015 Apr 23;9:193 - PubMed
  34. Clin Neuropsychol. 2006 Feb;20(1):145-59 - PubMed
  35. Appl Neuropsychol. 2000;7(4):252-8 - PubMed
  36. Brain Inj. 2007 Dec;21(13-14):1399-409 - PubMed
  37. Brain Cogn. 2004 Dec;56(3):304-12 - PubMed
  38. J Clin Exp Neuropsychol. 2011 Jan;33(1):101-11 - PubMed
  39. Clin Neuropsychol. 2008 Jul;22(4):689-704 - PubMed

Publication Types

Grant support