Display options
Share it on

Front Pharmacol. 2015 Dec 23;6:298. doi: 10.3389/fphar.2015.00298. eCollection 2015.

Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice.

Frontiers in pharmacology

Juan F Morici, Lucia Ciccia, Gaël Malleret, Jay A Gingrich, Pedro Bekinschtein, Noelia V Weisstaub

Affiliations

  1. Systems Neuroscience Group, Laboratory of Experimental Cognition and Behavior, Institute of Physiology and Biophysics, IFIBIO "Houssay," CONICET and University of Buenos Aires Medical School Buenos Aires, Argentina.
  2. Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR 5292 - Institut National de la Santé et de la Recherche Médicale U1028 - Université Claude Bernard Lyon1 Lyon, France.
  3. Sackler Institute for Developmental Psychobiology, Columbia University, New YorkNY, USA; New York State Psychiatric InstituteNew York, NY, USA.
  4. Laboratory of Memory Research and Molecular Cognition, Institute for Cell Biology and Neuroscience, CONICET and University of Buenos Aires Medical School Buenos Aires, Argentina.

PMID: 26779016 PMCID: PMC4688339 DOI: 10.3389/fphar.2015.00298

Abstract

Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a (-/-)) with wild type (htr2a (+/+)) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

Keywords: 5-HT1A receptor; 5-HT2A receptor; interference control; recognition memory; serotonin

References

  1. Learn Mem. 2007 Dec 17;14(12):821-32 - PubMed
  2. Behav Brain Res. 2004 Jul 9;152(2):425-36 - PubMed
  3. Neuron. 1995 Mar;14(3):477-85 - PubMed
  4. Neurosci Biobehav Rev. 1999 Dec;23(8):1111-25 - PubMed
  5. Eur J Pharmacol. 1995 Sep 5;283(1-3):133-9 - PubMed
  6. Trends Pharmacol Sci. 1993 Jun;14(6):233-6 - PubMed
  7. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4642-6 - PubMed
  8. Annu Rev Neurosci. 2004;27:279-306 - PubMed
  9. Eur J Neurosci. 2011 Feb;33(4):705-16 - PubMed
  10. Neuropharmacology. 2011 Sep;61(3):355-63 - PubMed
  11. Nat Neurosci. 2003 Nov;6(11):1141-2 - PubMed
  12. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):735-40 - PubMed
  13. Pharmacol Biochem Behav. 2002 Apr;71(4):533-54 - PubMed
  14. Hippocampus. 2016 May;26(5):633-45 - PubMed
  15. Biol Psychol. 2008 Oct;79(2):239-42 - PubMed
  16. Pharmacol Rev. 1994 Jun;46(2):157-203 - PubMed
  17. J Neurosci. 2010 Oct 6;30(40):13513-24 - PubMed
  18. PLoS One. 2012;7(8):e43698 - PubMed
  19. Neuron. 2003 Sep 25;40(1):177-88 - PubMed
  20. J Neurosci. 2004 May 19;24(20):4807-17 - PubMed
  21. Mol Neurobiol. 2011 Dec;44(3):449-64 - PubMed
  22. Ann Med. 2005;37(2):121-9 - PubMed
  23. Neuron. 2010 Jun 24;66(6):921-36 - PubMed
  24. Hippocampus. 2006;16(9):691-703 - PubMed
  25. Behav Brain Res. 1996;73(1-2):263-8 - PubMed
  26. J Neurosci. 2001 Dec 15;21(24):9917-29 - PubMed
  27. Mol Pharmacol. 1998 Jul;54(1):94-104 - PubMed
  28. Neurosci Biobehav Rev. 2014 Sep;45:233-45 - PubMed
  29. Exp Brain Res. 2014 Mar;232(3):723-38 - PubMed
  30. Science. 2006 Jul 28;313(5786):536-40 - PubMed
  31. Front Pharmacol. 2015 Jul 21;6:143 - PubMed
  32. Rev Neurosci. 2012;23(5-6):543-53 - PubMed
  33. Prog Neuropsychopharmacol Biol Psychiatry. 2003 Oct;27(7):1159-72 - PubMed
  34. Nat Neurosci. 2010 Jan;13(1):76-83 - PubMed
  35. Behav Brain Res. 2015 Oct 1;292:241-51 - PubMed
  36. Front Syst Neurosci. 2015 Mar 10;9:29 - PubMed
  37. Neuropsychopharmacology. 2015 Oct;40(11):2576-87 - PubMed
  38. Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):1079-84 - PubMed
  39. CNS Drugs. 2013 Sep;27(9):703-16 - PubMed
  40. J Neurosci. 2007 Mar 14;27(11):2948-57 - PubMed
  41. J Comp Neurol. 1999 Jun 28;409(2):187-209 - PubMed
  42. Front Neural Circuits. 2012 Mar 20;6:12 - PubMed
  43. Physiol Rev. 1992 Jan;72(1):165-229 - PubMed
  44. J Neurosci. 2006 Jan 18;26(3):792-800 - PubMed
  45. Neurobiol Learn Mem. 2011 Oct;96(3):417-31 - PubMed
  46. Cereb Cortex. 2004 Mar;14 (3):281-99 - PubMed
  47. J Neurosci. 1995 Jan;15(1 Pt 1):359-75 - PubMed
  48. J Neurosci. 2013 Oct 2;33(40):15716-25 - PubMed
  49. Front Integr Neurosci. 2013 Apr 19;7:25 - PubMed
  50. Front Behav Neurosci. 2015 Jan 30;9:2 - PubMed
  51. Cereb Cortex. 2016 Jul;26(7):3000-9 - PubMed
  52. J Neurosci. 2006 Feb 1;26(5):1407-17 - PubMed
  53. Neuropsychopharmacology. 2000 Nov;23(5):547-59 - PubMed
  54. J Comp Neurol. 2001 Jan 22;429(4):571-89 - PubMed
  55. Expert Opin Investig Drugs. 2013 Apr;22(4):411-21 - PubMed
  56. Brain Res Mol Brain Res. 1994 Apr;23(1-2):163-78 - PubMed
  57. Neuroscience. 1991;40(2):399-412 - PubMed
  58. Neurotox Res. 2002 Aug-Sep;4(5-6):409-419 - PubMed

Publication Types