Display options
Share it on

Front Mol Neurosci. 2016 Feb 02;9:2. doi: 10.3389/fnmol.2016.00002. eCollection 2016.

A Toolkit for Orthogonal and in vivo Optical Manipulation of Ionotropic Glutamate Receptors.

Frontiers in molecular neuroscience

Joshua Levitz, Andrei T Popescu, Andreas Reiner, Ehud Y Isacoff

Affiliations

  1. Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA.
  2. Department of Molecular and Cell Biology, University of California, BerkeleyBerkeley, CA, USA; Department of Biology and Biotechnology, Ruhr-University BochumBochum, Germany.
  3. Department of Molecular and Cell Biology, University of California, BerkeleyBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, USA; Physical Bioscience Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA.

PMID: 26869877 PMCID: PMC4735401 DOI: 10.3389/fnmol.2016.00002

Abstract

The ability to optically manipulate specific neuronal signaling proteins with genetic precision paves the way for the dissection of their roles in brain function, behavior, and disease. Chemical optogenetic control with photoswitchable tethered ligands (PTLs) enables rapid, reversible and reproducible activation or block of specific neurotransmitter-gated receptors and ion channels in specific cells. In this study, we further engineered and characterized the light-activated GluK2 kainate receptor, LiGluR, to develop a toolbox of LiGluR variants. Low-affinity LiGluRs allow for efficient optical control of GluK2 while removing activation by native glutamate, whereas variant RNA edited versions enable the synaptic role of receptors with high and low Ca(2+) permeability to be assessed and spectral variant photoswitches provide flexibility in illumination. Importantly, we establish that LiGluR works efficiently in the cortex of awake, adult mice using standard optogenetic techniques, thus opening the door to probing the role of specific synaptic receptors and cellular signals in the neural circuit operations of the mammalian brain in normal conditions and in disease. The principals developed in this study are widely relevant to the engineering and in vivo use of optically controllable proteins, including other neurotransmitter receptors.

Keywords: chemical optogenetics; glutamate receptor; in vivo; molecular engineering; photo-pharmacology

References

  1. Pharmacol Rev. 1999 Mar;51(1):7-61 - PubMed
  2. Curr Opin Neurobiol. 2002 Oct;12(5):587-92 - PubMed
  3. Nat Rev Neurosci. 2003 Jun;4(6):481-95 - PubMed
  4. Nat Neurosci. 2004 Dec;7(12):1381-6 - PubMed
  5. J Neurosci. 2005 Mar 2;25(9):2215-25 - PubMed
  6. Nat Chem Biol. 2006 Jan;2(1):47-52 - PubMed
  7. J Neurosci. 2006 Jul 19;26(29):7650-8 - PubMed
  8. Biochemistry. 2006 Dec 26;45(51):15129-41 - PubMed
  9. Nat Protoc. 2006;1(3):1412-28 - PubMed
  10. Neuron. 2007 May 24;54(4):535-45 - PubMed
  11. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10865-70 - PubMed
  12. Nat Methods. 2007 Aug;4(8):619-28 - PubMed
  13. Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6814-9 - PubMed
  14. Nature. 2009 Sep 17;461(7262):407-10 - PubMed
  15. Annu Rev Pharmacol Toxicol. 2010;50:295-322 - PubMed
  16. Nat Neurosci. 2010 Aug;13(8):1027-32 - PubMed
  17. Pharmacol Rev. 2010 Sep;62(3):405-96 - PubMed
  18. Trends Neurosci. 2011 Mar;34(3):154-63 - PubMed
  19. J Neurophysiol. 2011 Jul;106(1):488-96 - PubMed
  20. Mol Ther. 2011 Jul;19(7):1212-9 - PubMed
  21. Annu Rev Neurosci. 2011;34:389-412 - PubMed
  22. Annu Rev Cell Dev Biol. 2011;27:731-58 - PubMed
  23. Nat Neurosci. 2011 Dec 04;15(1):163-70 - PubMed
  24. Neuron. 2011 Dec 8;72(5):806-18 - PubMed
  25. J Physiol. 2012 Feb 15;590(4):855-73 - PubMed
  26. Nat Chem. 2012 Jan 10;4(2):105-11 - PubMed
  27. Neuron. 2012 Jun 21;74(6):1005-14 - PubMed
  28. Nat Neurosci. 2013 Apr;16(4):507-16 - PubMed
  29. Front Mol Neurosci. 2013 Mar 21;6:3 - PubMed
  30. Front Mol Neurosci. 2013 Apr 11;6:6 - PubMed
  31. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9142-7 - PubMed
  32. Sci Transl Med. 2013 Jun 12;5(189):189ra76 - PubMed
  33. Nat Neurosci. 2013 Jul;16(7):816-23 - PubMed
  34. Neuron. 2013 Oct 16;80(2):292-311 - PubMed
  35. J Am Chem Soc. 2013 Nov 27;135(47):17683-6 - PubMed
  36. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20813-8 - PubMed
  37. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):521-6 - PubMed
  38. Nat Chem Biol. 2014 Apr;10(4):273-80 - PubMed
  39. Methods Mol Biol. 2014;1148:45-68 - PubMed
  40. ACS Chem Biol. 2014 Jul 18;9(7):1414-9 - PubMed
  41. J Am Chem Soc. 2014 Jun 18;136(24):8693-701 - PubMed
  42. Neuron. 2014 Sep 3;83(5):1051-7 - PubMed
  43. Cell. 2014 Oct 9;159(2):440-55 - PubMed
  44. Chem Commun (Camb). 2014 Dec 4;50(93):14613-5 - PubMed
  45. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5574-83 - PubMed
  46. Curr Opin Pharmacol. 2015 Feb;20:135-43 - PubMed
  47. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E776-85 - PubMed
  48. J Physiol. 2015 Jul 1;593(13):2807-32 - PubMed
  49. Neuron. 2015 Dec 2;88(5):879-891 - PubMed
  50. ACS Cent Sci. 2015 Oct 28;1(7):383-93 - PubMed
  51. J Physiol. 1995 Jun 1;485 ( Pt 2):403-18 - PubMed
  52. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):755-9 - PubMed
  53. J Comp Neurol. 1994 Nov 1;349(1):85-110 - PubMed
  54. J Pharmacol Exp Ther. 1997 Jan;280(1):422-7 - PubMed

Publication Types

Grant support