Display options
Share it on

Front Mol Neurosci. 2016 Feb 03;9:7. doi: 10.3389/fnmol.2016.00007. eCollection 2016.

Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson's Disease.

Frontiers in molecular neuroscience

Stefan Jean-Pierre Haas, Xiaolai Zhou, Venissa Machado, Andreas Wree, Kerstin Krieglstein, Björn Spittau

Affiliations

  1. Institute of Anatomy, Rostock University Medical Center Rostock, Germany.
  2. Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-UniversityFreiburg, Germany; Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthaca, NY, USA.
  3. Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-UniversityFreiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-UniversityFreiburg, Germany; Faculty of Biology, Albert-Ludwigs-UniversityFreiburg, Germany.
  4. Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany.

PMID: 26869879 PMCID: PMC4737885 DOI: 10.3389/fnmol.2016.00007

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO).

Keywords: 6-OHDA; Tgfβ1; Tnfα; astrocytes; microglia

References

  1. J Neuroinflammation. 2012 Sep 04;9:210 - PubMed
  2. J Neuroimmunol. 2015 Feb 15;279:50-63 - PubMed
  3. Cell Tissue Res. 2013 Mar;351(3):373-82 - PubMed
  4. J Neuropathol Exp Neurol. 2009 Oct;68(10):1092-102 - PubMed
  5. J Neurochem. 2009 Aug;110(3):966-75 - PubMed
  6. Neurobiol Aging. 2013 Jun;34(6):1610-20 - PubMed
  7. Nat Rev Neurosci. 2014 May;15(5):300-12 - PubMed
  8. Curr Drug Targets. 2005 Nov;6(7):821-33 - PubMed
  9. Adv Neurol. 2001;86:55-72 - PubMed
  10. Cell Tissue Res. 2004 Oct;318(1):215-24 - PubMed
  11. Mov Disord. 2008 Mar 15;23(4):474-83 - PubMed
  12. Brain Res. 2002 Dec 20;958(1):185-91 - PubMed
  13. Glia. 2010 Nov 1;58(14):1686-700 - PubMed
  14. J Neuroimmunol. 2007 Dec;192(1-2):31-9 - PubMed
  15. Glia. 1998 Dec;24(4):437-48 - PubMed
  16. J Neurochem. 2015 Jul;134(1):125-34 - PubMed
  17. Am J Pathol. 1995 Jul;147(1):53-67 - PubMed
  18. Eur J Neurosci. 2014 Mar;39(6):1042-56 - PubMed
  19. Annu Rev Pharmacol Toxicol. 2014;54:141-64 - PubMed
  20. J Immunol. 2004 Jun 1;172(11):7015-23 - PubMed
  21. J Cereb Blood Flow Metab. 2010 Mar;30(3):603-15 - PubMed
  22. Neurobiol Dis. 2015 Jan;73:377-87 - PubMed
  23. J Neuroimmunol. 2014 May 15;270(1-2):22-8 - PubMed
  24. J Neuroimmunol. 1997 Jul;77(1):45-50 - PubMed
  25. Trends Neurosci. 2006 Sep;29(9):506-10 - PubMed
  26. J Anat. 2005 Dec;207(6):717-25 - PubMed
  27. J Neurochem. 2012 Oct;123(1):113-23 - PubMed
  28. J Neuroinflammation. 2011 Jan 25;8:9 - PubMed
  29. Glia. 2013 Jul;61(7):1084-100 - PubMed
  30. Neuroscience. 2011 Feb 23;175:251-61 - PubMed
  31. Glia. 2015 Jan;63(1):142-53 - PubMed
  32. Acta Neuropathol. 2013 Apr;125(4):609-20 - PubMed
  33. Glia. 2013 Feb;61(2):287-300 - PubMed
  34. Neurobiol Dis. 2007 Feb;25(2):378-91 - PubMed
  35. J Immunol. 2006 Nov 15;177(10):6787-94 - PubMed
  36. Neuroscience. 2010 Jan 20;165(2):386-94 - PubMed
  37. Lancet Neurol. 2009 Apr;8(4):382-97 - PubMed
  38. Can Med Assoc J. 1969 Dec 27;101(13):59-68 - PubMed
  39. Life Sci. 2011 Aug 1;89(5-6):141-6 - PubMed
  40. Nat Neurosci. 2014 Jan;17(1):131-43 - PubMed
  41. Glia. 2013 Oct;61(10):1645-58 - PubMed
  42. Exp Neurol. 2010 Nov;226(1):136-47 - PubMed
  43. Nat Rev Neurosci. 2007 Jan;8(1):57-69 - PubMed
  44. PLoS One. 2012;7(10):e46731 - PubMed
  45. J Comp Neurol. 2010 Sep 15;518(18):3752-70 - PubMed
  46. Neuroscience. 1990;39(1):151-70 - PubMed

Publication Types