Display options
Share it on

Front Microbiol. 2016 Jan 05;6:1486. doi: 10.3389/fmicb.2015.01486. eCollection 2015.

Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem.

Frontiers in microbiology

Jorge A Valdivia-Anistro, Luis E Eguiarte-Fruns, Gabriela Delgado-Sapién, Pedro Márquez-Zacarías, Jaime Gasca-Pineda, Jennifer Learned, James J Elser, Gabriela Olmedo-Alvarez, Valeria Souza

Affiliations

  1. Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México Coyoacán, Mexico.
  2. Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Coyoacán, Mexico.
  3. School of Biology, Georgia Institute of Technology, Atlanta GA, USA.
  4. School of Life Sciences, Arizona State University, Tempe AZ, USA.
  5. Laboratorio de Bacteriología Molecular, Departamento de Ingeniería Genética, CINVESTAV - Unidad Irapuato Irapuato, Mexico.

PMID: 26779143 PMCID: PMC4700252 DOI: 10.3389/fmicb.2015.01486

Abstract

The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6-15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the physiology of this bacterial group under extreme oligotrophic conditions.

Keywords: Bacillus; Cuatro Ciénegas; bacterial growth; oligotrophy; rRNA operon copies

References

  1. Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 - PubMed
  2. Nat Rev Microbiol. 2007 Oct;5(10):770-81 - PubMed
  3. Extremophiles. 2009 May;13(3):541-55 - PubMed
  4. Food Microbiol. 2011 Apr;28(2):305-10 - PubMed
  5. Appl Environ Microbiol. 2010 Mar;76(5):1349-58 - PubMed
  6. Nat Rev Microbiol. 2008 Jul;6(7):559-64 - PubMed
  7. Mol Ecol. 2006 Jun;15(7):1713-31 - PubMed
  8. Environ Microbiol. 2014 May;16(5):1366-77 - PubMed
  9. Science. 2010 Nov 19;330(6007):1099-102 - PubMed
  10. Microbiology. 2003 Dec;149(Pt 12):3565-73 - PubMed
  11. Environ Microbiol. 2007 Oct;9(10):2464-74 - PubMed
  12. J Gen Microbiol. 1956 Dec;15(3):492-511 - PubMed
  13. J Bacteriol. 1999 Apr;181(8):2624-30 - PubMed
  14. Int J Food Microbiol. 2005 Apr 15;100(1-3):179-86 - PubMed
  15. Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1585-9 - PubMed
  16. BMC Microbiol. 2009 Sep 25;9:208 - PubMed
  17. Ecol Lett. 2008 Jun;11(6):609-23 - PubMed
  18. Int J Food Microbiol. 2012 Aug 1;158(1):36-41 - PubMed
  19. Extremophiles. 2000 Aug;4(4):209-14 - PubMed
  20. Microb Ecol. 2003 Mar;45(3):203-17 - PubMed
  21. PLoS One. 2013 Dec 30;8(12):e85476 - PubMed
  22. Microbiology. 2013 Nov;159(Pt 11):2225-36 - PubMed
  23. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  24. Mol Ecol. 2007 Nov;16(22):4649-61 - PubMed
  25. Appl Environ Microbiol. 1990 Jun;56(6):1875-81 - PubMed
  26. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6565-70 - PubMed
  27. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12552-7 - PubMed
  28. Int Microbiol. 2006 Sep;9(3):157-61 - PubMed
  29. J Bacteriol. 1995 Jul;177(14):4152-6 - PubMed
  30. J Gen Appl Microbiol. 2000 Feb;46(1):1-8 - PubMed
  31. Appl Environ Microbiol. 2004 Nov;70(11):6670-7 - PubMed
  32. J Gen Microbiol. 1962 Apr;28:15-33 - PubMed
  33. Int J Evol Biol. 2011 Mar 03;2011:781642 - PubMed
  34. J Bacteriol. 1983 Jun;154(3):1222-6 - PubMed
  35. Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5803-8 - PubMed
  36. BMC Genomics. 2010 May 26;11:332 - PubMed
  37. J Bacteriol. 1978 Jun;134(3):699-705 - PubMed
  38. Ecol Lett. 2011 Mar;14(3):244-50 - PubMed
  39. EMBO Rep. 2011 May;12(5):458-62 - PubMed
  40. J Bacteriol. 2004 May;186(9):2629-35 - PubMed
  41. PLoS One. 2009;4(2):e4462 - PubMed
  42. Int Microbiol. 2004 Mar;7(1):19-25 - PubMed
  43. Nature. 2009 Mar 5;458(7234):69-72 - PubMed
  44. PLoS One. 2012;7(1):e28121 - PubMed
  45. Astrobiology. 2012 Jul;12(7):641-7 - PubMed
  46. Appl Environ Microbiol. 2000 Apr;66(4):1328-33 - PubMed
  47. Nature. 2005 Sep 15;437(7057):343-8 - PubMed
  48. ISME J. 2013 Mar;7(3):487-97 - PubMed
  49. Appl Environ Microbiol. 2014 May;80(9):2901-9 - PubMed
  50. Antonie Van Leeuwenhoek. 2011 Feb;99(2):303-18 - PubMed
  51. J Bacteriol. 1999 Dec;181(24):7405-8 - PubMed
  52. Am Nat. 2006 Dec;168 Suppl 6:S25-35 - PubMed
  53. Microbiology. 2010 Oct;156(Pt 10):2944-52 - PubMed
  54. Int J Food Microbiol. 1996 Jul;30(3):359-72 - PubMed
  55. Int J Syst Evol Microbiol. 2008 Apr;58(Pt 4):919-23 - PubMed
  56. Chem Soc Rev. 2005 Aug;34(8):691-701 - PubMed
  57. Appl Microbiol Biotechnol. 1999 Feb;51(2):229-34 - PubMed
  58. Nucleic Acids Res. 2001 Jan 1;29(1):181-4 - PubMed
  59. Astrobiology. 2012 Jul;12(7):648-58 - PubMed
  60. Science. 2008 May 23;320(5879):1039-43 - PubMed
  61. Appl Environ Microbiol. 1997 Apr;63(4):1237-43 - PubMed
  62. Appl Environ Microbiol. 2000 May;66(5):2037-44 - PubMed
  63. BMC Syst Biol. 2013 Mar 25;7:27 - PubMed
  64. Environ Microbiol. 2009 Jun;11(6):1340-7 - PubMed
  65. Front Microbiol. 2015 Apr 22;6:349 - PubMed
  66. Ecology. 2007 Jun;88(6):1354-64 - PubMed
  67. PLoS One. 2014 Aug 05;9(8):e103930 - PubMed
  68. Int J Syst Evol Microbiol. 2001 Sep;51(Pt 5):1671-9 - PubMed
  69. PLoS One. 2013 Sep 12;8(9):e74120 - PubMed
  70. PLoS Genet. 2010 Jan 15;6(1):e1000808 - PubMed
  71. Annu Rev Microbiol. 1996;50:645-77 - PubMed
  72. Science. 2003 Aug 15;301(5635):976-8 - PubMed
  73. FEMS Microbiol Lett. 1999 Dec 15;181(2):261-6 - PubMed
  74. Trends Ecol Evol. 2006 Apr;21(4):178-85 - PubMed
  75. Nucleic Acids Res. 2015 Jan;43(Database issue):D593-8 - PubMed
  76. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6874-8 - PubMed
  77. Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15527-33 - PubMed
  78. J Bacteriol. 2007 Apr;189(8):3237-45 - PubMed
  79. Ecol Lett. 2006 Mar;9(3):295-303 - PubMed
  80. Int J Food Microbiol. 1997 Sep 16;38(2-3):229-34 - PubMed
  81. Appl Environ Microbiol. 1998 Nov;64(11):4433-8 - PubMed
  82. J Bacteriol. 1986 Jul;167(1):219-30 - PubMed

Publication Types