Display options
Share it on

Front Plant Sci. 2015 Dec 23;6:1169. doi: 10.3389/fpls.2015.01169. eCollection 2015.

Application of a Scalable Plant Transient Gene Expression Platform for Malaria Vaccine Development.

Frontiers in plant science

Holger Spiegel, Alexander Boes, Nadja Voepel, Veronique Beiss, Gueven Edgue, Thomas Rademacher, Markus Sack, Stefan Schillberg, Andreas Reimann, Rainer Fischer

Affiliations

  1. Fraunhofer Institute for Molecular Biology and Applied Ecology IME Aachen, Germany.
  2. Institute for Molecular Biotechnology, RWTH Aachen University Aachen, Germany.
  3. Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen, Germany; Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany.

PMID: 26779197 PMCID: PMC4688378 DOI: 10.3389/fpls.2015.01169

Abstract

Despite decades of intensive research efforts there is currently no vaccine that provides sustained sterile immunity against malaria. In this context, a large number of targets from the different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates. None of these candidates has fulfilled expectations, and as long as we lack a single target that induces strain-transcending protective immune responses, combining key antigens from different life cycle stages seems to be the most promising route toward the development of efficacious malaria vaccines. After the identification of potential targets using approaches such as omics-based technology and reverse immunology, the rapid expression, purification, and characterization of these proteins, as well as the generation and analysis of fusion constructs combining different promising antigens or antigen domains before committing to expensive and time consuming clinical development, represents one of the bottlenecks in the vaccine development pipeline. The production of recombinant proteins by transient gene expression in plants is a robust and versatile alternative to cell-based microbial and eukaryotic production platforms. The transfection of plant tissues and/or whole plants using Agrobacterium tumefaciens offers a low technical entry barrier, low costs, and a high degree of flexibility embedded within a rapid and scalable workflow. Recombinant proteins can easily be targeted to different subcellular compartments according to their physicochemical requirements, including post-translational modifications, to ensure optimal yields of high quality product, and to support simple and economical downstream processing. Here, we demonstrate the use of a plant transient expression platform based on transfection with A. tumefaciens as essential component of a malaria vaccine development workflow involving screens for expression, solubility, and stability using fluorescent fusion proteins. Our results have been implemented for the evidence-based iterative design and expression of vaccine candidates combining suitable P. falciparum antigen domains. The antigens were also produced, purified, and characterized in further studies by taking advantage of the scalability of this platform.

Keywords: Nicotiana benthamiana plants; Plasmodium falciparum; expression screening; heat stability; multi domain-fusion antigens; red fluorescent protein

References

  1. Parasite Immunol. 1999 Mar;21(3):133-9 - PubMed
  2. Infect Immun. 1999 May;67(5):2193-200 - PubMed
  3. Biotechnol Appl Biochem. 1999 Oct;30 ( Pt 2):113-6 - PubMed
  4. Trends Plant Sci. 2001 May;6(5):219-26 - PubMed
  5. J Exp Med. 2001 Jun 18;193(12):1403-12 - PubMed
  6. Mol Med. 2001 Apr;7(4):247-54 - PubMed
  7. Nat Biotechnol. 2002 Jan;20(1):83-7 - PubMed
  8. Br Med Bull. 2002;62:59-72 - PubMed
  9. Infect Immun. 2002 Dec;70(12):6961-7 - PubMed
  10. J Biol Chem. 2003 Jul 11;278(28):25977-81 - PubMed
  11. Vaccine. 2005 Mar 18;23(17-18):2042-8 - PubMed
  12. Vaccine. 2005 Mar 18;23(17-18):2082-6 - PubMed
  13. Protein Sci. 2005 Apr;14(4):1091-103 - PubMed
  14. PLoS Biol. 2005 Sep;3(9):e309 - PubMed
  15. Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):861-6 - PubMed
  16. Mol Biochem Parasitol. 2006 Dec;150(2):256-67 - PubMed
  17. Curr Opin Biotechnol. 2007 Apr;18(2):134-41 - PubMed
  18. Nat Rev Microbiol. 2007 Jul;5(7):487-9 - PubMed
  19. Plant Biotechnol J. 2008 Feb;6(2):189-201 - PubMed
  20. J Clin Invest. 2008 Jan;118(1):342-51 - PubMed
  21. Infect Immun. 2008 May;76(5):2240-8 - PubMed
  22. Clin Microbiol Rev. 2009 Jan;22(1):13-36, Table of Contents - PubMed
  23. PLoS One. 2009;4(3):e4792 - PubMed
  24. Biotechnol Bioeng. 2010 May 1;106(1):9-17 - PubMed
  25. Plant Biotechnol J. 2010 Feb;8(2):223-42 - PubMed
  26. Plant Biotechnol J. 2010 Jun;8(5):607-19 - PubMed
  27. PLoS One. 2010 Dec 22;5(12):e15559 - PubMed
  28. Biotechnol Bioeng. 2011 Dec;108(12):2804-14 - PubMed
  29. Philos Trans R Soc Lond B Biol Sci. 2011 Oct 12;366(1579):2806-14 - PubMed
  30. PLoS Pathog. 2011 Sep;7(9):e1002199 - PubMed
  31. Infect Immun. 2012 Mar;80(3):1280-7 - PubMed
  32. Ann Pharmacother. 2012 Mar;46(3):384-93 - PubMed
  33. Biotechnol Bioeng. 2012 Oct;109(10):2575-88 - PubMed
  34. N Engl J Med. 2012 Dec 13;367(24):2284-95 - PubMed
  35. PLoS One. 2013;8(3):e58724 - PubMed
  36. J Immunol. 2013 Jul 15;191(2):795-809 - PubMed
  37. Protoplasma. 2013 Dec;250(6):1381-92 - PubMed
  38. J Vis Exp. 2013 Jul 23;(77):null - PubMed
  39. Lancet. 2013 Nov 23;382(9906):1700-1 - PubMed
  40. PLoS One. 2013 Nov 18;8(11):e79538 - PubMed
  41. PLoS One. 2013 Nov 21;8(11):e79920 - PubMed
  42. Cell Microbiol. 2014 May;16(5):621-31 - PubMed
  43. Biotechnol J. 2014 Nov;9(11):1435-45 - PubMed
  44. Plant Biotechnol J. 2015 Feb;13(2):222-34 - PubMed
  45. Front Bioeng Biotechnol. 2014 Dec 11;2:67 - PubMed
  46. Biotechnol Bioeng. 2015 Jul;112(7):1297-305 - PubMed
  47. Vaccine. 2015 Apr 8;33(15):1830-8 - PubMed
  48. J Biotechnol. 2015 Apr 20;200:10-6 - PubMed
  49. Lancet. 2015 Jul 4;386(9988):31-45 - PubMed
  50. Biotechnol J. 2015 Oct;10(10):1651-9 - PubMed
  51. PLoS One. 2015 Jul 06;10(7):e0131456 - PubMed
  52. BMC Microbiol. 2015 Jul 03;15:133 - PubMed
  53. Malar J. 2015 Jul 16;14:276 - PubMed
  54. Plant Biotechnol J. 2015 Oct;13(8):1094-105 - PubMed
  55. BMC Med. 2015 Jul 29;13:170 - PubMed
  56. Sci Rep. 2015 Aug 13;5:13247 - PubMed
  57. Nat Plants. 2015 Nov 02;1:15165 - PubMed
  58. Am J Trop Med Hyg. 1984 May;33(3):336-41 - PubMed
  59. Mol Biochem Parasitol. 1993 Aug;60(2):303-11 - PubMed

Publication Types