Display options
Share it on

Front Microbiol. 2016 Feb 02;7:64. doi: 10.3389/fmicb.2016.00064. eCollection 2016.

The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

Frontiers in microbiology

Ana Gil-Bona, Jose A Reales-Calderon, Claudia M Parra-Giraldo, Raquel Martinez-Lopez, Lucia Monteoliva, Concha Gil

Affiliations

  1. Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain.
  2. Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain.

PMID: 26870022 PMCID: PMC4735633 DOI: 10.3389/fmicb.2016.00064

Abstract

Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

Keywords: Candida albicans; Ecm33; cell wall regeneration; chronological lifespan; host–cell interaction; stress response; veil growth

References

  1. Cell Mol Life Sci. 2002 Jun;59(6):903-8 - PubMed
  2. PLoS Genet. 2007 May 25;3(5):e84 - PubMed
  3. FEMS Microbiol Lett. 2000 Apr 15;185(2):147-50 - PubMed
  4. Microbiology. 2005 Aug;151(Pt 8):2737-49 - PubMed
  5. Eukaryot Cell. 2011 May;10(5):672-82 - PubMed
  6. Sabouraudia. 1975 Jul;13(2):148-53 - PubMed
  7. J Proteome Res. 2015 Oct 2;14(10):4270-81 - PubMed
  8. Eukaryot Cell. 2005 Jul;4(7):1273-86 - PubMed
  9. Mol Biol Cell. 2008 Dec;19(12):5214-25 - PubMed
  10. Mol Biol Cell. 2013 Feb;24(3):385-97 - PubMed
  11. MBio. 2011 Dec 27;3(1):null - PubMed
  12. Int J Food Microbiol. 2013 Oct 15;167(2):269-75 - PubMed
  13. Appl Microbiol Biotechnol. 2014 Jun;98(12):5517-29 - PubMed
  14. Evolution. 2013 Nov;67(11):3077-86 - PubMed
  15. Cell Death Differ. 2010 May;17(5):763-73 - PubMed
  16. Science. 2005 Nov 18;310(5751):1193-6 - PubMed
  17. Mol Biol Cell. 2012 Jan;23(2):268-83 - PubMed
  18. J Lab Clin Med. 1957 Aug;50(2):313-7 - PubMed
  19. J Proteomics. 2015 Sep 8;127(Pt B):340-51 - PubMed
  20. J Biol Chem. 2006 Oct 20;281(42):31616-26 - PubMed
  21. Science. 2010 Jan 22;327(5964):425-31 - PubMed
  22. Mol Microbiol. 2006 Sep;61(5):1147-66 - PubMed
  23. J Biosci. 2010 Mar;35(1):119-26 - PubMed
  24. Mol Gen Genet. 1984;198(2):179-82 - PubMed
  25. Adv Genet. 2013;81:33-82 - PubMed
  26. Nat Genet. 2010 Jul;42(7):590-8 - PubMed
  27. J Cell Biol. 2004 Sep 27;166(7):1055-67 - PubMed
  28. J Cell Biol. 1995 Mar;128(5):779-92 - PubMed
  29. J Proteome Res. 2015 Jan 2;14(1):142-53 - PubMed
  30. FEMS Microbiol Rev. 2009 Sep;33(5):833-54 - PubMed
  31. Eukaryot Cell. 2011 Aug;10(8):1071-81 - PubMed
  32. Proteomics. 2009 Oct;9(20):4770-86 - PubMed
  33. Mol Cell Proteomics. 2006 Jan;5(1):79-96 - PubMed
  34. J Biol Chem. 2005 Jan 28;280(4):2529-35 - PubMed
  35. Genes Dev. 2006 Jan 15;20(2):174-84 - PubMed
  36. Cell. 2006 Feb 10;124(3):471-84 - PubMed
  37. PLoS Genet. 2008 Jan;4(1):e13 - PubMed
  38. MBio. 2015 Jun 02;6(3):e00724 - PubMed
  39. Eukaryot Cell. 2010 Nov;9(11):1776-87 - PubMed
  40. Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544 - PubMed
  41. PLoS One. 2013;8(3):e59013 - PubMed
  42. J Electron Microsc (Tokyo). 1995 Apr;44(2):72-8 - PubMed
  43. Science. 2010 Apr 16;328(5976):321-6 - PubMed
  44. Eukaryot Cell. 2009 Nov;8(11):1616-25 - PubMed
  45. Microbiology. 2004 Oct;150(Pt 10):3341-54 - PubMed
  46. FEMS Yeast Res. 2009 Oct;9(7):1013-28 - PubMed
  47. J Biol Chem. 2000 Jan 14;275(2):1511-9 - PubMed
  48. Mol Biol Cell. 2007 Aug;18(8):2779-94 - PubMed
  49. J Biol Chem. 2003 May 30;278(22):20345-57 - PubMed
  50. Cell Metab. 2007 Apr;5(4):265-77 - PubMed
  51. Proteomics. 2012 Aug;12(14):2331-9 - PubMed
  52. Mol Cell Proteomics. 2007 Mar;6(3):460-78 - PubMed
  53. J Biol Chem. 2002 Nov 8;277(45):43495-504 - PubMed
  54. Microbiology. 2004 Dec;150(Pt 12):4157-70 - PubMed
  55. Proteomics. 2008 Sep;8(18):3871-81 - PubMed
  56. FEMS Yeast Res. 2008 Aug;8(5):715-24 - PubMed
  57. Cell Death Differ. 2009 Jan;16(1):3-11 - PubMed
  58. Eukaryot Cell. 2006 Jan;5(1):140-7 - PubMed
  59. Eukaryot Cell. 2011 Apr;10(4):502-11 - PubMed
  60. Cell. 2005 Nov 18;123(4):655-67 - PubMed

Publication Types