Display options
Share it on

Stem Cells Int. 2016;2016:5282185. doi: 10.1155/2016/5282185. Epub 2015 Dec 06.

Potential Role of Activating Transcription Factor 5 during Osteogenesis.

Stem cells international

Luisa Vicari, Giovanna Calabrese, Stefano Forte, Raffaella Giuffrida, Cristina Colarossi, Nunziatina Laura Parrinello, Lorenzo Memeo

Affiliations

  1. IOM Ricerca Srl, Via Penninazzo 11, 95029 Viagrande, Italy.
  2. Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy.
  3. IOM Ricerca Srl, Via Penninazzo 11, 95029 Viagrande, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, 95029 Viagrande, Italy.

PMID: 26770207 PMCID: PMC4684884 DOI: 10.1155/2016/5282185

Abstract

Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

References

  1. Apoptosis. 2003 Jun;8(3):225-8 - PubMed
  2. Int J Cancer. 2007 May 1;120(9):1883-90 - PubMed
  3. Stem Cells. 2006 May;24(5):1294-301 - PubMed
  4. Mol Biol Cell. 2002 Dec;13(12):4279-95 - PubMed
  5. BMC Bioinformatics. 2012 Jun 18;13:134 - PubMed
  6. Mol Cell Endocrinol. 2009 Oct 30;310(1-2):52-62 - PubMed
  7. Methods Mol Biol. 2014;1210:161-81 - PubMed
  8. Mol Cell Neurosci. 2005 Jul;29(3):372-80 - PubMed
  9. Genome Biol. 2006;7(10):R100 - PubMed
  10. World J Stem Cells. 2014 Jul 26;6(3):312-21 - PubMed
  11. J Neurosci. 2003 Jun 1;23(11):4590-600 - PubMed
  12. Stem Cells Int. 2012;2012:812693 - PubMed
  13. Cell J. 2015 Spring;17(1):71-82 - PubMed
  14. Methods. 2008 Jun;45(2):115-20 - PubMed
  15. J Neurosci. 2005 Apr 13;25(15):3889-99 - PubMed
  16. Nat Med. 2007 Jul;13(7):791-801 - PubMed
  17. Tissue Eng. 2001 Apr;7(2):211-28 - PubMed
  18. Curr Top Dev Biol. 2003;58:137-60 - PubMed
  19. J Stem Cells Regen Med. 2007 May 16;2(1):110-2 - PubMed
  20. Circ Res. 2007 May 11;100(9):1249-60 - PubMed
  21. World J Stem Cells. 2014 Apr 26;6(2):144-52 - PubMed
  22. Br J Haematol. 2005 Apr;129(1):118-29 - PubMed
  23. J Neurochem. 2009 Jan;108(1):11-22 - PubMed
  24. Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18589-94 - PubMed
  25. Dev Growth Differ. 2013 Apr;55(3):309-18 - PubMed
  26. Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 - PubMed
  27. Oncotarget. 2010 Oct;1(6):457-60 - PubMed
  28. ANZ J Surg. 2009 Apr;79(4):235-44 - PubMed
  29. Transfus Apher Sci. 2012 Oct;47(2):193-8 - PubMed
  30. World J Stem Cells. 2014 Jan 26;6(1):65-8 - PubMed
  31. FEBS J. 2013 Sep;280(18):4693-707 - PubMed
  32. J Biochem. 2010 Aug;148(2):171-8 - PubMed
  33. J Cell Biochem. 2012 Aug;113(8):2744-53 - PubMed

Publication Types