Display options
Share it on

Oncol Lett. 2016 Jan;11(1):51-58. doi: 10.3892/ol.2015.3829. Epub 2015 Oct 26.

Identification of potential therapeutic targets for papillary thyroid carcinoma by bioinformatics analysis.

Oncology letters

Ming Zhao, Ke-Jing Wang, Zhuo Tan, Chuan-Ming Zheng, Zhong Liang, Jian-Qiang Zhao

Affiliations

  1. Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China.

PMID: 26870166 PMCID: PMC4726925 DOI: 10.3892/ol.2015.3829

Abstract

The aim of the present study was to identify potential therapeutic targets for papillary thyroid carcinoma (PTC) and to investigate the possible mechanism underlying this disease. The gene expression profile, GSE53157, was downloaded from the Gene Expression Omnibus database. Only 10 chips, including 3 specimens of normal thyroid tissues and 7 specimens of well-differentiated thyroid carcinomas, were analyzed in the present study. Differentially-expressed genes (DEGs) between PTC patients and normal individuals were identified. Next, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of DEGs were performed. Modules in the protein-protein interaction (PPI) network were identified. Significant target genes were selected from the microRNA (miRNA) regulatory network. Furthermore, the integrated network was constructed with the miRNA regulatory and PPI network modules, and key target genes were screened. A total of 668 DEGs were identified. Modules M1, M2 and M3 were identified from the PPI network. From the modules, DEGs of cyclin-dependent kinase inhibitor 1A, S100 calcium binding protein A6 (S100A6), dual specificity phosphatase 5, keratin 19, met proto-oncogene (MET) and lectin galactoside-binding soluble 3 were included in the Malacards database. In the miRNA regulatory and integrated networks, genes of cyclin-dependent kinase inhibitor 1C (CDKN1C), peroxisome proliferator-activated receptor γ, aryl hydrocarbon receptor, basic helix-loop-helix family, member e40 and reticulon 1 were the key target genes. S100A6, MET and CDKN1C may exhibit key roles in the progression and development of PTC, and may be used as specific therapeutic targets in the treatment of PTC. However, further experiments are required to confirm these results.

Keywords: differentially-expressed gene; modules; papillary thyroid carcinoma

References

  1. Cancer Res. 1995 May 1;55(9):1963-70 - PubMed
  2. Cancer Res. 1998 Apr 15;58(8):1719-22 - PubMed
  3. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 - PubMed
  4. Thyroid. 2010 Oct;20(10):1067-76 - PubMed
  5. Int J Cancer. 2005 Apr 10;114(3):406-13 - PubMed
  6. J Clin Endocrinol Metab. 2014 Mar;99(3):E497-507 - PubMed
  7. Br J Cancer. 2009 Nov 17;101(10):1782-91 - PubMed
  8. BMC Bioinformatics. 2011 Nov 09;12:436 - PubMed
  9. J Surg Res. 2014 Jun 1;189(1):68-74 - PubMed
  10. Br J Cancer. 2000 Sep;83(6):769-74 - PubMed
  11. Molecules. 2014 Aug 05;19(8):11586-99 - PubMed
  12. Jpn J Clin Oncol. 1997 Dec;27(6):378-83 - PubMed
  13. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  14. Blood Cancer J. 2011 Jun;1(6):e24 - PubMed
  15. Virchows Arch. 2013 Jan;462(1):95-100 - PubMed
  16. Oncogene. 1991 Apr;6(4):501-4 - PubMed
  17. Histopathology. 2005 Mar;46(3):256-69 - PubMed
  18. Cancer. 2005 Jun 1;103(11):2261-8 - PubMed
  19. Br J Cancer. 2007 Jan 15;96(1):16-20 - PubMed
  20. J Mol Med (Berl). 2014 Mar;92(3):291-303 - PubMed
  21. Am J Surg Pathol. 2006 Feb;30(2):216-22 - PubMed
  22. Bioinformatics. 2004 Feb 12;20(3):307-15 - PubMed
  23. Database (Oxford). 2013 Apr 12;2013:bat018 - PubMed
  24. Bioinformatics. 2005 Aug 15;21(16):3448-9 - PubMed
  25. Endocrinol Metab Clin North Am. 1997 Mar;26(1):189-218 - PubMed
  26. Endocr Pathol. 2007 Fall;18(3):163-73 - PubMed
  27. J Biol Chem. 2008 Oct 31;283(44):30174-83 - PubMed
  28. J Cell Biochem. 2003 Mar 1;88(4):848-54 - PubMed
  29. Genome Biol. 2003;4(5):P3 - PubMed
  30. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29 - PubMed
  31. Oncogene. 2008 Sep 25;27(43):5651-61 - PubMed
  32. Oncogene. 2004 May 27;23(25):4380-8 - PubMed
  33. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 - PubMed
  34. Gland Surg. 2015 Feb;4(1):52-62 - PubMed
  35. Int J Cancer. 1994 Sep 1;58(5):658-62 - PubMed
  36. Clin Chem Lab Med. 2011 Feb;49(2):325-9 - PubMed
  37. Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15 - PubMed
  38. Oncogene. 1992 Dec;7(12):2549-53 - PubMed
  39. PLoS One. 2009;4(2):e4482 - PubMed
  40. BMC Cancer. 2008 Mar 06;8:68 - PubMed
  41. Histopathology. 2005 May;46(5):569-75 - PubMed
  42. PLoS One. 2013 Oct 22;8(10):e76994 - PubMed
  43. Cancer. 2009 Aug 15;115(16):3801-7 - PubMed
  44. Mol Med Rep. 2014 Oct;10 (4):2087-92 - PubMed
  45. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 - PubMed
  46. BMC Proc. 2009 Jul 16;3 Suppl 4:S10 - PubMed
  47. Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 - PubMed

Publication Types