Display options
Share it on

Nat Commun. 2016 Feb 04;7:10469. doi: 10.1038/ncomms10469.

Suppression law of quantum states in a 3D photonic fast Fourier transform chip.

Nature communications

Andrea Crespi, Roberto Osellame, Roberta Ramponi, Marco Bentivegna, Fulvio Flamini, Nicolò Spagnolo, Niko Viggianiello, Luca Innocenti, Paolo Mataloni, Fabio Sciarrino

Affiliations

  1. Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
  2. Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
  3. Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
  4. Università di Roma Tor Vergata, Via della ricerca scientifica 1, I-00133 Roma, Italy.

PMID: 26843135 PMCID: PMC4742850 DOI: 10.1038/ncomms10469

Abstract

The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms.

References

  1. Science. 2010 Sep 17;329(5998):1500-3 - PubMed
  2. Sci Adv. 2015 Apr 17;1(3):e1400255 - PubMed
  3. Nature. 2001 Jan 4;409(6816):46-52 - PubMed
  4. Phys Rev Lett. 2015 May 1;114(17):170802 - PubMed
  5. Nature. 2005 Mar 10;434(7030):169-76 - PubMed
  6. Phys Rev Lett. 2011 Jun 17;106(24):240502 - PubMed
  7. Science. 2007 Dec 7;318(5856):1567-70 - PubMed
  8. Phys Rev Lett. 2004 Oct 29;93(18):180403 - PubMed
  9. Phys Rev Lett. 2014 Jul 11;113(2):020502 - PubMed
  10. Nat Commun. 2013;4:1606 - PubMed
  11. Opt Express. 2012 Nov 19;20(24):26895-905 - PubMed
  12. Science. 2015 Aug 14;349(6249):711-6 - PubMed
  13. Science. 2005 Mar 18;307(5716):1733-4 - PubMed
  14. Phys Rev Lett. 2003 Apr 11;90(14):143601 - PubMed
  15. Phys Rev Lett. 1988 Jul 4;61(1):50-53 - PubMed
  16. Phys Rev Lett. 2014 Apr 11;112(14):143604 - PubMed
  17. Sci Rep. 2012;2:862 - PubMed
  18. Phys Rev Lett. 2013 Sep 27;111(13):130503 - PubMed
  19. Phys Rev Lett. 2012 Jun 29;108(26):260505 - PubMed
  20. Phys Rev Lett. 2010 Jun 4;104(22):220405 - PubMed
  21. Phys Rev Lett. 1994 Jul 4;73(1):58-61 - PubMed
  22. Science. 2013 Feb 15;339(6121):794-8 - PubMed
  23. Science. 2013 Feb 15;339(6121):798-801 - PubMed
  24. Phys Rev Lett. 1987 Nov 2;59(18):2044-2046 - PubMed

Publication Types