Display options
Share it on

Front Zool. 2015 Aug 24;12:S16. doi: 10.1186/1742-9994-12-S1-S16. eCollection 2015.

Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems.

Frontiers in zoology

Ronald G Oldfield, Rayna M Harris, Hans A Hofmann

Affiliations

  1. Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341 USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA.
  2. Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA.
  3. Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA.

PMID: 26813803 PMCID: PMC4722349 DOI: 10.1186/1742-9994-12-S1-S16

Abstract

The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.

Keywords: AVP; AVT; V1a; monogamy; polygyny; territory

References

  1. Neuroscience. 1991;43(2-3):623-30 - PubMed
  2. J Appl Anim Welf Sci. 2011;14(4):340-60 - PubMed
  3. Curr Opin Neurobiol. 2010 Dec;20(6):784-94 - PubMed
  4. Proc Biol Sci. 2006 Dec 22;273(1605):3085-92 - PubMed
  5. Horm Behav. 2013 Jun;64(1):44-52 - PubMed
  6. Gen Comp Endocrinol. 2012 Dec 1;179(3):451-64 - PubMed
  7. Proc R Soc Lond B Biol Sci. 1989 May 22;236(1285):339-72 - PubMed
  8. Front Neuroendocrinol. 2011 Aug;32(3):320-35 - PubMed
  9. J Comp Neurol. 1997 Feb 24;378(4):535-46 - PubMed
  10. J Neuroendocrinol. 1999 Jan;11(1):19-25 - PubMed
  11. Mol Biol Evol. 2010 Jun;27(6):1269-78 - PubMed
  12. Gen Comp Endocrinol. 2012 Nov 1;179(2):221-31 - PubMed
  13. Horm Behav. 2006 Mar;49(3):276-81 - PubMed
  14. Horm Behav. 2006 Aug;50(2):223-36 - PubMed
  15. Neurosci Lett. 1985 Apr 9;55(2):239-43 - PubMed
  16. Horm Behav. 2012 Mar;61(3):283-92 - PubMed
  17. J Exp Zool. 1999 Sep 1;284(4):401-6 - PubMed
  18. J Comp Psychol. 2005 Nov;119(4):447-54 - PubMed
  19. Front Neuroendocrinol. 2002 Apr;23(2):200-24 - PubMed
  20. J Comp Neurol. 2008 Apr 20;507(6):1847-59 - PubMed
  21. Endocrinology. 2011 Dec;152(12):4865-81 - PubMed
  22. Horm Behav. 2011 Jun;60(1):22-7 - PubMed
  23. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):400-4 - PubMed
  24. Behav Neurosci. 2001 Aug;115(4):910-9 - PubMed
  25. Brain Behav Evol. 2010;75(4):282-91 - PubMed
  26. Trends Ecol Evol. 1990 Feb;5(2):39-43 - PubMed
  27. J Exp Biol. 2001 Jun;204(Pt 11):1909-23 - PubMed
  28. Physiol Behav. 2009 Mar 2;96(3):470-5 - PubMed
  29. Gen Comp Endocrinol. 2004 Feb;135(3):300-9 - PubMed
  30. Horm Behav. 2012 Feb;61(2):212-7 - PubMed
  31. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17013-7 - PubMed
  32. Horm Behav. 1999 Aug;36(1):53-61 - PubMed
  33. Behav Neurosci. 2004 Jun;118(3):620-6 - PubMed
  34. Biol Reprod. 2009 Jul;81(1):111-7 - PubMed
  35. Horm Behav. 2009 Jun;56(1):101-7 - PubMed
  36. Brain Res. 1983 Aug 29;273(2):307-17 - PubMed
  37. J Neuroendocrinol. 2008 Dec;20(12):1382-94 - PubMed
  38. Am Nat. 2010 Apr;175(4):436-46 - PubMed
  39. Horm Behav. 1998 Aug;34(1):67-77 - PubMed
  40. Biol Rev Camb Philos Soc. 2004 May;79(2):351-75 - PubMed
  41. Gen Comp Endocrinol. 2012 Jan 15;175(2):290-6 - PubMed
  42. J Comp Neurol. 1987 Jul 8;261(2):237-52 - PubMed
  43. Gen Comp Endocrinol. 1998 Sep;111(3):271-82 - PubMed
  44. Horm Behav. 2012 May;61(5):725-33 - PubMed
  45. Horm Behav. 2011 Jan;59(1):56-66 - PubMed
  46. Brain Behav Evol. 2007;69(4):254-65 - PubMed
  47. Science. 1984 May 4;224(4648):521-3 - PubMed
  48. Prog Brain Res. 2008;170:261-76 - PubMed
  49. Nat Neurosci. 2004 Oct;7(10):1048-54 - PubMed
  50. Horm Behav. 2010 Jul;58(2):273-81 - PubMed
  51. Science. 1977 Jul 15;197(4300):215-23 - PubMed
  52. J Neurosci. 1994 Sep;14(9):5381-92 - PubMed
  53. Horm Behav. 1999 Aug;36(1):25-38 - PubMed
  54. Brain Behav Evol. 2009;73(3):153-64 - PubMed
  55. J Comp Neurol. 1996 May 27;369(2):252-63 - PubMed
  56. J Comp Neurol. 1996 Mar 18;366(4):726-37 - PubMed
  57. Horm Behav. 2012 Mar;61(3):227-9 - PubMed
  58. Horm Behav. 2012 Mar;61(3):230-8 - PubMed
  59. Horm Behav. 2012 Mar;61(3):445-53 - PubMed
  60. Brain Res. 2011 Jul 15;1401:74-84 - PubMed
  61. Physiol Behav. 2011 Mar 1;102(3-4):296-303 - PubMed
  62. Brain Res Brain Res Rev. 2001 Jul;35(3):246-65 - PubMed
  63. Horm Behav. 2010 Sep;58(4):555-62 - PubMed
  64. Brain Res Bull. 2002 Feb-Mar 1;57(3-4):423-5 - PubMed
  65. Anim Behav. 1998 Oct;56(4):983-987 - PubMed
  66. Nature. 2004 Jun 17;429(6993):754-7 - PubMed
  67. J Neurosci. 2009 Feb 4;29(5):1312-8 - PubMed
  68. Horm Behav. 2001 Aug;40(1):21-31 - PubMed
  69. Horm Behav. 2004 May;45(5):345-53 - PubMed
  70. Curr Biol. 2010 Mar 23;20(6):487-95 - PubMed
  71. Neurobiol Learn Mem. 2010 Feb;93(2):240-7 - PubMed
  72. J Chem Neuroanat. 2012 Jul;44(2):86-97 - PubMed
  73. Mol Ecol. 2007 Apr;16(7):1349-58 - PubMed
  74. Prog Brain Res. 2008;170:3-15 - PubMed
  75. Front Neurosci. 2013 Dec 17;7:242 - PubMed
  76. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1249-54 - PubMed
  77. Neuron. 2005 Aug 18;47(4):503-13 - PubMed
  78. Brain Behav Evol. 2000 Feb;55(2):77-84 - PubMed
  79. Mol Ecol. 2012 Feb;21(3):541-53 - PubMed
  80. Behav Brain Res. 2006 Feb 15;167(1):94-102 - PubMed
  81. Brain Res. 1988 Aug 2;457(1):143-7 - PubMed
  82. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3262-7 - PubMed
  83. Behav Neurosci. 1995 Apr;109(2):305-11 - PubMed
  84. Horm Behav. 2013 Mar;63(3):437-46 - PubMed
  85. Horm Behav. 2004 Feb;45(2):136-43 - PubMed
  86. Fish Physiol Biochem. 2010 Sep;36(3):337-45 - PubMed
  87. BMC Genomics. 2010 Sep 16;11:498 - PubMed
  88. Psychoneuroendocrinology. 2011 Oct;36(9):1265-75 - PubMed
  89. Anim Behav. 2000 Dec;60(6):765-772 - PubMed
  90. J Chem Neuroanat. 2011 Sep;42(1):72-88 - PubMed
  91. Curr Opin Neurobiol. 2014 Oct;28:22-7 - PubMed
  92. Nature. 1999 Aug 19;400(6746):766-8 - PubMed
  93. Behav Neurosci. 1997 Jun;111(3):599-605 - PubMed
  94. Psychoneuroendocrinology. 2014 Dec;50:14-9 - PubMed
  95. Horm Behav. 2005 Aug;48(2):196-206 - PubMed
  96. Trends Ecol Evol. 1996 Oct;11(10):404-8 - PubMed
  97. Horm Behav. 2004 Dec;46(5):628-37 - PubMed
  98. J Comp Neurol. 2011 Dec 15;519(18):3599-639 - PubMed
  99. Gen Comp Endocrinol. 2003 Jun 15;132(2):183-9 - PubMed
  100. Gen Comp Endocrinol. 1998 Aug;111(2):233-44 - PubMed
  101. J Comp Neurol. 2012 Feb 15;520(3):633-55 - PubMed
  102. Prog Brain Res. 2008;170:17-27 - PubMed
  103. J Comp Neurol. 2004 May 31;473(3):293-314 - PubMed
  104. Proc Biol Sci. 2008 Oct 22;275(1649):2393-402 - PubMed
  105. J Exp Biol. 2008 Sep;211(Pt 18):3041-56 - PubMed
  106. Trends Ecol Evol. 2014 Oct;29(10 ):581-9 - PubMed
  107. PLoS One. 2012;7(3):e32559 - PubMed
  108. Physiol Behav. 1990 Nov;48(5):693-9 - PubMed
  109. Horm Behav. 2005 Nov;48(4):430-9 - PubMed
  110. Horm Behav. 2005 Feb;47(2):223-9 - PubMed
  111. Front Neuroendocrinol. 2009 Oct;30(4):429-41 - PubMed
  112. Eur J Neurosci. 2008 May;27(9):2285-93 - PubMed
  113. Nature. 1993 Oct 7;365(6446):545-8 - PubMed
  114. Horm Behav. 2011 Jun;60(1):12-21 - PubMed
  115. Mol Cell Endocrinol. 2010 Jun 10;321(2):215-30 - PubMed
  116. Exp Physiol. 2014 Jan;99(1):55-61 - PubMed
  117. Science. 2012 Jun 1;336(6085):1154-7 - PubMed
  118. Horm Behav. 2010 Aug;58(3):368-77 - PubMed
  119. J Comp Neurol. 2009 Oct 1;516(4):321-33 - PubMed
  120. Science. 2008 Nov 7;322(5903):900-4 - PubMed

Publication Types