Display options
Share it on

Nat Commun. 2016 Feb 22;7:10747. doi: 10.1038/ncomms10747.

Wavefront shaping through emulated curved space in waveguide settings.

Nature communications

Chong Sheng, Rivka Bekenstein, Hui Liu, Shining Zhu, Mordechai Segev

Affiliations

  1. National Laboratory of Solid State Microstructures &School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.
  2. Department of Physics and Solid State Institute, Technion, Haifa 32000, Israel.

PMID: 26899285 PMCID: PMC4764892 DOI: 10.1038/ncomms10747

Abstract

The past decade has witnessed remarkable progress in wavefront shaping, including shaping of beams in free space, of plasmonic wavepackets and of electronic wavefunctions. In all of these, the wavefront shaping was achieved by external means such as masks, gratings and reflection from metasurfaces. Here, we propose wavefront shaping by exploiting general relativity (GR) effects in waveguide settings. We demonstrate beam shaping within dielectric slab samples with predesigned refractive index varying so as to create curved space environment for light. We use this technique to construct very narrow non-diffracting beams and shape-invariant beams accelerating on arbitrary trajectories. Importantly, the beam transformations occur within a mere distance of 40 wavelengths, suggesting that GR can inspire any wavefront shaping in highly tight waveguide settings. In such settings, we demonstrate Einstein's Rings: a phenomenon dating back to 1936.

References

  1. Phys Rev Lett. 2007 Nov 23;99(21):213901 - PubMed
  2. Phys Rev Lett. 2011 Sep 9;107(11):116802 - PubMed
  3. Nat Commun. 2014 Jul 03;5:4316 - PubMed
  4. Phys Rev Lett. 1993 Mar 8;70(10):1401-1404 - PubMed
  5. Science. 2013 Mar 15;339(6125):1232009 - PubMed
  6. Opt Lett. 2010 Jun 15;35(12):2082-4 - PubMed
  7. Nat Nanotechnol. 2011 Mar;6(3):151-5 - PubMed
  8. Nature. 2013 Feb 21;494(7437):331-5 - PubMed
  9. Opt Express. 2009 May 11;17(10):8109-18 - PubMed
  10. Opt Lett. 1994 Jun 1;19(11):843-5 - PubMed
  11. Opt Lett. 1995 Oct 15;20(20):2042-4 - PubMed
  12. Phys Rev Lett. 2015 Jul 17;115(3):034501 - PubMed
  13. Phys Rev Lett. 2004 Mar 26;92(12):120404 - PubMed
  14. Phys Rev Lett. 2010 Aug 6;105(6):067402 - PubMed
  15. Phys Rev Lett. 2009 Apr 3;102(13):133902 - PubMed
  16. Phys Rev Lett. 2014 Jan 17;112(2):023903 - PubMed
  17. Nat Commun. 2014 Oct 30;5:5189 - PubMed
  18. Nat Mater. 2010 May;9(5):387-96 - PubMed
  19. Opt Lett. 2007 Apr 15;32(8):979-81 - PubMed
  20. Opt Express. 2011 Nov 21;19(24):23706-15 - PubMed
  21. Science. 2006 Jun 23;312(5781):1777-80 - PubMed
  22. Phys Rev Lett. 2011 May 27;106(21):213903 - PubMed
  23. Phys Rev Lett. 2008 Mar 21;100(11):113901 - PubMed
  24. Science. 2011 Oct 21;334(6054):333-7 - PubMed
  25. Nature. 2010 Apr 1;464(7289):737-9 - PubMed
  26. Phys Rev Lett. 2012 Nov 9;109(19):193901 - PubMed
  27. Science. 2006 Jun 23;312(5781):1780-2 - PubMed
  28. Opt Lett. 2011 Aug 15;36(16):3191-3 - PubMed
  29. Nat Mater. 2009 Jul;8(7):568-71 - PubMed
  30. Phys Rev Lett. 2012 Aug 31;109(9):093904 - PubMed
  31. Phys Rev Lett. 2012 Apr 20;108(16):163901 - PubMed
  32. Phys Rev Lett. 2012 Mar 16;108(11):113903 - PubMed
  33. Science. 1936 Dec 4;84(2188):506-7 - PubMed
  34. Phys Rev Lett. 2008 Nov 14;101(20):203901 - PubMed
  35. Opt Lett. 2005 Oct 1;30(19):2611-3 - PubMed
  36. Nat Mater. 2006 Feb;5(2):93-6 - PubMed
  37. Opt Express. 2004 Apr 5;12(7):1214-20 - PubMed
  38. Opt Express. 2011 Aug 15;19(17):16455-65 - PubMed
  39. Phys Rev Lett. 2013 Jan 25;110(4):046807 - PubMed
  40. Science. 2009 Apr 10;324(5924):229-32 - PubMed
  41. Phys Rev Lett. 2009 May 29;102(21):213901 - PubMed
  42. Phys Rev Lett. 2011 May 27;106(21):213902 - PubMed
  43. Phys Rev Lett. 1987 Apr 13;58(15):1499-1501 - PubMed

Publication Types