Display options
Share it on

Probiotics Antimicrob Proteins. 2012 Sep;4(3):154-61. doi: 10.1007/s12602-012-9103-1.

Characterization of a Reuterin-Producing Lactobacillus reuteri BPL-36 Strain Isolated from Human Infant Fecal Sample.

Probiotics and antimicrobial proteins

Santosh Kumar Mishra, R K Malik, G Manju, Neha Pandey, Garima Singroha, Pradip Behare, J K Kaushik

Affiliations

  1. Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India.
  2. Dairy Microbiology Division, National Dairy Research Institute, Karnal, 132001, India. [email protected].
  3. Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, India.

PMID: 26782041 DOI: 10.1007/s12602-012-9103-1

Abstract

A reuterin (3-hydroxypropinaldehyde, 3-HPA)-producing isolate from a human infant fecal sample was identified as Lactobacillus reuteri BPL-36 strain. The organism displayed a broad-spectrum antimicrobial activity. The gene (gdh) encoding a glycerol dehydratase subunit was detected by PCR, thus confirming its reuterin-producing ability. Reuterin concentration of 89.63 mM/mL was obtained in the MRS-glycerol medium after 16 h of incubation at 37 °C. The reuterin concentration required to inhibit the growth of Pseudomonas aeruginosa, Escherichia coli O157: H7, Salmonella typhi, Staphylococcus aureus, and Listeria monocytogenes was found to be 1.0, 2.0, 2.0, 4.0, and 10.0 AU/mL, respectively. Antimicrobial efficiency test using BPL-36 cell-free supernatant co-incubated along with different test pathogens was done. Viability of all the tested pathogens decreased with increasing contact time with the cell-free supernatant. S. typhi was observed to be the most susceptible among the tested organisms, and the number of viable cells hugely declined as the contact with cell-free supernatant continued, resulting in a reduction of 6 log cycles (100 % inhibition) of the cells after 4 h of treatment. Production of biogenic amines and degradation of mucin by the reuterin-producing BPL-36 strain were not detected.

Keywords: Antimicrobials; Lactobacillus reuteri; Pathogens; Reuterin; Safety

References

  1. Adv Biochem Eng Biotechnol. 2002;74:239-59 - PubMed
  2. Infect Immun. 1996 Nov;64(11):4514-9 - PubMed
  3. Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-76 - PubMed
  4. J Food Prot. 1999 Mar;62(3):257-61 - PubMed
  5. Antimicrob Agents Chemother. 1988 Dec;32(12):1854-8 - PubMed
  6. Int J Food Microbiol. 1999 Dec 1;53(1):33-41 - PubMed
  7. Nucleic Acids Res. 1991 Dec 25;19(24):6823-31 - PubMed
  8. FEMS Immunol Med Microbiol. 1997 Jun;18(2):125-32 - PubMed
  9. FEMS Microbiol Lett. 2002 Sep 10;214(2):271-5 - PubMed
  10. Anaerobe. 2008 Jun;14(3):166-71 - PubMed
  11. Appl Environ Microbiol. 2001 Jan;67(1):1-5 - PubMed
  12. Appl Microbiol Biotechnol. 1999 Sep;52(3):289-97 - PubMed
  13. Antimicrob Agents Chemother. 1989 May;33(5):674-9 - PubMed
  14. FEMS Microbiol Rev. 1998 Dec;22(5):553-66 - PubMed
  15. Trends Genet. 1995 Jun;11(6):217-8 - PubMed
  16. J Appl Microbiol. 2006 Jun;100(6):1324-32 - PubMed
  17. Int J Food Microbiol. 2001 Jan 22;63(1-2):81-90 - PubMed
  18. Lett Appl Microbiol. 2007 Mar;44(3):314-9 - PubMed
  19. J Food Prot. 1998 Oct;61(10):1275-80 - PubMed
  20. J Agric Food Chem. 2003 May 21;51(11):3287-93 - PubMed
  21. FEMS Microbiol Lett. 2000 Jun 15;187(2):167-73 - PubMed
  22. Asia Pac J Clin Nutr. 1996 Mar;5(1):25-8 - PubMed
  23. Scand J Gastroenterol. 1995 Jul;30(7):675-80 - PubMed
  24. Int J Food Microbiol. 2004 Sep 1;95(2):225-9 - PubMed

Publication Types