Display options
Share it on

Probiotics Antimicrob Proteins. 2012 Sep;4(3):208-16. doi: 10.1007/s12602-012-9108-9.

Cyto-Insectotoxin 1a from Lachesana tarabaevi Spider Venom Inhibits Chlamydia trachomatis Infection.

Probiotics and antimicrobial proteins

Nadezhda F Polina, Marina M Shkarupeta, Anna S Popenko, Alexander A Vassilevski, Sergey A Kozlov, Eugene V Grishin, Vassili N Lazarev, Vadim M Govorun

Affiliations

  1. Research Institute for Physico-Chemical Medicine of the Federal Medical-Biological Agency of Russian Federation, 1a Malaya Pirogovskaya st., 119435, Moscow, Russia.
  2. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya st., 117997, Moscow, Russia.
  3. Research Institute for Physico-Chemical Medicine of the Federal Medical-Biological Agency of Russian Federation, 1a Malaya Pirogovskaya st., 119435, Moscow, Russia. [email protected].
  4. National Research Centre "Kurchatov Institute", 1 Akademika Kurchatova sq., 123182, Moscow, Russia. [email protected].
  5. National Research Centre "Kurchatov Institute", 1 Akademika Kurchatova sq., 123182, Moscow, Russia.

PMID: 26782047 DOI: 10.1007/s12602-012-9108-9

Abstract

Venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. Among them, a special place belongs to cyto-insectotoxins, a class of cytolytic molecules showing equally potent antimicrobial and insecticidal effects. We tested one of them, CIT 1a, for ability to suppress Chlamydia trachomatis infection. HEK293 cells were transfected with plasmid vectors harboring the cit 1a gene. Controlled expression of the transgene led to a significant decrease in C. trachomatis viability inside the infected cells. Using proteomic and transcriptomic approaches, we found alterations in protein expression patterns and identified differentially expressed genes in transfected cells.

Keywords: Antimicrobial peptide; Cytolytic peptide; Gene therapy; Infectious disease; Proteomics; Transcriptome

References

  1. J Clin Invest. 2003 Jun;111(11):1647-9 - PubMed
  2. Infect Immun. 1996 Mar;64(3):709-13 - PubMed
  3. Curr Opin Infect Dis. 2012 Feb;25(1):73-8 - PubMed
  4. Clin Infect Dis. 2010 Jul 15;51(2):189-94 - PubMed
  5. Int J Antimicrob Agents. 2002 Feb;19(2):133-7 - PubMed
  6. Biochem Biophys Res Commun. 2005 Dec 16;338(2):946-50 - PubMed
  7. Hum Gene Ther. 2002 Nov 20;13(17):2017-25 - PubMed
  8. Annu Rev Pharmacol Toxicol. 2012;52:337-60 - PubMed
  9. Expert Opin Pharmacother. 2005 Oct;6(13):2281-90 - PubMed
  10. Clin Microbiol Infect. 2009 Apr;15 Suppl 3:12-5 - PubMed
  11. Biochimie. 2011 Feb;93(2):227-41 - PubMed
  12. Expert Rev Proteomics. 2008 Oct;5(5):731-46 - PubMed
  13. Biochem J. 2008 May 1;411(3):687-96 - PubMed
  14. Antimicrob Agents Chemother. 2012 May;56(5):2452-8 - PubMed
  15. J Biol Chem. 2006 Jul 28;281(30):20983-92 - PubMed
  16. Mol Microbiol. 1995 Feb;15(4):607-16 - PubMed
  17. Biochemistry (Mosc). 2009 Dec;74(13):1505-34 - PubMed
  18. Infect Immun. 1981 Mar;31(3):1161-76 - PubMed
  19. Microbes Infect. 2004 May;6(6):536-41 - PubMed
  20. Biosci Rep. 2007 Oct;27(4-5):189-223 - PubMed
  21. J Exp Med. 1998 Feb 16;187(4):487-96 - PubMed
  22. Nat Rev Microbiol. 2004 Oct;2(10):802-8 - PubMed
  23. Antimicrob Agents Chemother. 2011 Nov;55(11):5367-9 - PubMed
  24. Clin Infect Dis. 2005 Aug 15;41 Suppl 4:S258-62 - PubMed
  25. FEMS Microbiol Rev. 2008 Nov;32(6):956-73 - PubMed
  26. Nat Biotechnol. 2006 Dec;24(12):1551-7 - PubMed
  27. Infect Immun. 2002 Jul;70(7):3793-803 - PubMed
  28. Future Microbiol. 2010 Jul;5(7):1073-85 - PubMed
  29. Antimicrob Agents Chemother. 2007 Feb;51(2):468-74 - PubMed

Publication Types