Display options
Share it on

Nat Commun. 2016 Jan 19;7:10413. doi: 10.1038/ncomms10413.

Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods.

Nature communications

Yuval Ben-Shahar, Francesco Scotognella, Ilka Kriegel, Luca Moretti, Giulio Cerullo, Eran Rabani, Uri Banin

Affiliations

  1. The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus Givat-Ram, Jerusalem 91904, Israel.
  2. Dipartimento di Fisica, IFN-CNR, Politecnico di Milano, 20133 Milan, Italy.
  3. Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, USA.
  4. The Sackler Institute for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel.

PMID: 26783194 PMCID: PMC4735686 DOI: 10.1038/ncomms10413

Abstract

Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics.

References

  1. Nano Lett. 2013 May 8;13(5):2016-23 - PubMed
  2. Science. 1998 Sep 11;281(5383):1647-50 - PubMed
  3. J Am Chem Soc. 2004 Apr 21;126(15):4943-50 - PubMed
  4. Small. 2015 Jan 27;11(4):462-71 - PubMed
  5. J Am Chem Soc. 2009 Dec 2;131(47):17406-11 - PubMed
  6. ACS Nano. 2011 Jun 28;5(6):4712-9 - PubMed
  7. Science. 2004 Jun 18;304(5678):1787-90 - PubMed
  8. Chemphyschem. 2009 May 11;10(7):1028-31 - PubMed
  9. Small. 2012 Jan 23;8(2):291-7 - PubMed
  10. Chem Soc Rev. 2009 Jan;38(1):253-78 - PubMed
  11. J Phys Chem Lett. 2012 Mar 1;3(5):663-72 - PubMed
  12. Phys Chem Chem Phys. 2012 Apr 21;14(15):5222-8 - PubMed
  13. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):29-34 - PubMed
  14. Nat Chem. 2011 Jun;3(6):489-92 - PubMed
  15. Nano Lett. 2007 Oct;7(10):2942-50 - PubMed
  16. ACS Nano. 2012 Sep 25;6(9):8156-65 - PubMed
  17. ACS Nano. 2013 May 28;7(5):4316-25 - PubMed
  18. J Am Chem Soc. 2013 Sep 11;135(36):13262-5 - PubMed
  19. J Am Chem Soc. 2014 May 28;136(21):7708-16 - PubMed
  20. J Am Chem Soc. 2012 Jun 27;134(25):10337-40 - PubMed
  21. Science. 2012 Dec 7;338(6112):1321-4 - PubMed
  22. Isr J Chem. 2012 Dec;52(11-12):1002-1015 - PubMed
  23. Nano Lett. 2005 Jan;5(1):131-5 - PubMed
  24. Nano Lett. 2013 Nov 13;13(11):5255-63 - PubMed

Publication Types