Display options
Share it on

Cell Mol Gastroenterol Hepatol. 2015 Nov 01;1(6):646-663.e4. doi: 10.1016/j.jcmgh.2015.07.007.

Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ.

Cellular and molecular gastroenterology and hepatology

Davide Povero, Nadia Panera, Akiko Eguchi, Casey D Johnson, Bettina G Papouchado, Lucas de Araujo Horcel, Eva M Pinatel, Anna Alisi, Valerio Nobili, Ariel E Feldstein

Affiliations

  1. Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
  2. Hepato-Metabolic Disease Unit and Liver Research Unit, Bambino-Gesu' Children's Hospital, IRCCS, 00165, Roma, Italy.
  3. Department of Pathology, VA San Diego Healthcare System, San Diego, CA 92103, USA.
  4. Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.; Centro Universitário Lusiada, Santos, 11050-071, Brazil.
  5. Institute of Biomedical Technologies, National Research Council, 20090, Segrate Milano, Italy.

PMID: 26783552 PMCID: PMC4714359 DOI: 10.1016/j.jcmgh.2015.07.007

Abstract

BACKGROUND&AIMS: Hepatic stellate cells (HSCs) play a key role in liver fibrosis in various chronic liver disorders including nonalcoholic fatty liver disease (NAFLD). The development of liver fibrosis requires a phenotypic switch from quiescent to activated HSCs. The triggers for HSCs activation in NAFLD remain poorly understood. We investigated the role and molecular mechanism of extracellular vesicles (EVs) released by hepatocytes during lipotoxicity in modulation of HSC phenotype.

METHODS: EVs were isolated from fat-laden hepatocytes by differential centrifugation and incubated with HSCs. EV internalization and HSCs activation, migration and proliferation were assessed. Loss- and gain-of-functions studies were performed to explore the potential role of PPAR-γ-targeting miRNAs carried by EVs into HSC.

RESULTS: Hepatocyte-derived EVs released during lipotoxicity are efficiently internalized by HSCs resulting in their activation, as shown by marked up-regulation of pro-fibrogenic genes (Collagen-I, α-SMA and TIMP-2), proliferation, chemotaxis and wound healing responses. These changes were associated with miRNAs shuttled by EVs and suppression of PPAR-γ expression in HSC. Hepatocyte-derived EVs miRNA content included various miRNAs that are known inhibitors of PPAR-γ expression with miR-128-3p being the most effectively transferred. Furthermore loss- and gain-of-function studies identified miR-128-3p as a central modulator of the effects of EVs on PPAR-γ inhibition and HSC activation.

CONCLUSION: Our findings demonstrate a link between fat-laden hepatocyte-derived EVs and liver fibrosis and have potential implications for the development of novel anti-fibrotic targets for NAFLD and other fibrotic diseases.

Keywords: Extracellular Vesicles; Hepatic Stellate Cell; Lipotoxicity; Liver Fibrosis; miRNAs

Conflict of interest statement

None

References

  1. Nat Med. 2007 Nov;13(11):1324-32 - PubMed
  2. Stem Cells Dev. 2012 Nov 1;21(16):3031-43 - PubMed
  3. J Leukoc Biol. 2014 May;95(5):817-825 - PubMed
  4. Cardiovasc Res. 2012 Mar 15;93(4):633-44 - PubMed
  5. Circulation. 2013 Oct 29;128(18):2026-38 - PubMed
  6. Hepatology. 1995 Dec;22(6):1714-9 - PubMed
  7. Hepatology. 2008 May;47(5):1495-503 - PubMed
  8. Ann Intern Med. 2000 Jan 18;132(2):112-7 - PubMed
  9. Gastroenterology. 2000 Jun;118(6):1117-23 - PubMed
  10. PLoS One. 2014 Dec 03;9(12):e113651 - PubMed
  11. Hepatology. 1999 Dec;30(6):1356-62 - PubMed
  12. J Cell Biol. 2013 Feb 18;200(4):373-83 - PubMed
  13. Hepatology. 2002 Jun;35(6):1485-93 - PubMed
  14. Hepatology. 2007 Nov;46(5):1509-18 - PubMed
  15. Gastroenterology. 2002 Jul;123(1):134-40 - PubMed
  16. Hepatology. 2011 Oct;54(4):1208-16 - PubMed
  17. J Hepatol. 1998 Nov;29(5):836-47 - PubMed
  18. J Biol Chem. 2010 Apr 16;285(16):11846-53 - PubMed
  19. N Engl J Med. 2002 Apr 18;346(16):1221-31 - PubMed
  20. Int J Mol Sci. 2014 May 27;15(6):9360-71 - PubMed
  21. Leukemia. 2006 Sep;20(9):1487-95 - PubMed
  22. Clin Liver Dis. 2007 Feb;11(1):155-72, x - PubMed
  23. Hepatology. 2004 Feb;39(2):273-8 - PubMed
  24. Am J Physiol Gastrointest Liver Physiol. 2010 Jan;298(1):G101-6 - PubMed
  25. Gastroenterology. 2008 May;134(6):1655-69 - PubMed
  26. Expert Rev Gastroenterol Hepatol. 2009 Aug;3(4):445-51 - PubMed
  27. QJM. 1999 Feb;92(2):73-9 - PubMed
  28. Sci Signal. 2013 Oct 08;6(296):ra88 - PubMed
  29. Am J Physiol Gastrointest Liver Physiol. 2012 Jun 1;302(11):G1310-21 - PubMed
  30. Obesity (Silver Spring). 2007 Apr;15(4):798-808 - PubMed
  31. J Biol Chem. 2004 Mar 19;279(12):11392-401 - PubMed
  32. Gastroenterology. 2000 Aug;119(2):466-78 - PubMed
  33. Hepatology. 2004 Dec;40(6):1387-95 - PubMed
  34. J Biol Chem. 2013 Aug 9;288(32):23586-96 - PubMed
  35. J Hepatol. 1991 Mar;12(2):224-9 - PubMed
  36. Gastroenterology. 2004 Oct;127(4):1260-2 - PubMed
  37. PLoS One. 2013 Oct 01;8(10 ):e76541 - PubMed
  38. Hepatology. 2008 Dec;48(6):1810-20 - PubMed
  39. Cell Signal. 2012 Dec;24(12):2268-72 - PubMed
  40. FEBS Lett. 2013 Nov 29;587(23):3792-801 - PubMed
  41. J Cell Physiol. 2014 May;229(5):631-9 - PubMed
  42. Hepatology. 2011 Jan;53(1):230-42 - PubMed
  43. PLoS One. 2011;6(9):e24993 - PubMed
  44. Gastroenterology. 2012 Aug;143(2):448-58 - PubMed
  45. Dig Dis. 2010;28(1):155-61 - PubMed
  46. Aliment Pharmacol Ther. 2011 Aug;34(3):274-85 - PubMed
  47. Trends Cell Biol. 2009 Feb;19(2):43-51 - PubMed
  48. J Biol Chem. 2009 Feb 27;284(9):5637-44 - PubMed
  49. Stem Cells. 2012 Sep;30(9):1985-98 - PubMed
  50. Blood. 2007 Oct 1;110(7):2440-8 - PubMed
  51. Physiol Rev. 2008 Jan;88(1):125-72 - PubMed
  52. J Biol Chem. 2000 Nov 17;275(46):35715-22 - PubMed
  53. Hepatology. 2009 Oct;50(4):1282-93 - PubMed
  54. PLoS One. 2009;4(3):e4722 - PubMed
  55. Am J Med. 1999 Nov;107(5):450-5 - PubMed
  56. FEBS Lett. 2009 Feb 18;583(4):759-66 - PubMed

Publication Types

Grant support