Display options
Share it on

Ann Clin Transl Neurol. 2015 Sep 19;2(11):987-1001. doi: 10.1002/acn3.245. eCollection 2015 Nov.

Chronic enzyme replacement therapy ameliorates neuropathology in alpha-mannosidosis mice.

Annals of clinical and translational neurology

Markus Damme, Stijn Stroobants, Meike Lüdemann, Michelle Rothaug, Renate Lüllmann-Rauch, Hans Christian Beck, Annika Ericsson, Claes Andersson, Jens Fogh, Rudi D'Hooge, Paul Saftig, Judith Blanz

Affiliations

  1. Biochemical Institute University of Kiel D-24098 Kiel Germany.
  2. Laboratory of Biological Psychology University of Leuven B-3000 Leuven Belgium.
  3. Anatomical Institute University of Kiel D-24098 Kiel Germany.
  4. Department of Biochemistry and Pharmacology Centre for Clinical Proteomics Odense University Hospital Sdr Boulevard 29 DK-5000 Odense C Denmark.
  5. Zymenex A/S Roskildevej 12C 3400 Hillerød Denmark.

PMID: 26817023 PMCID: PMC4693626 DOI: 10.1002/acn3.245

Abstract

OBJECTIVE: The lysosomal storage disease alpha-mannosidosis is caused by the deficiency of the lysosomal acid hydrolase alpha-mannosidase (LAMAN) leading to lysosomal accumulation of neutral mannose-linked oligosaccharides throughout the body, including the brain. Clinical findings in alpha-mannosidosis include skeletal malformations, intellectual disabilities and hearing impairment. To date, no curative treatment is available. We previously developed a beneficial enzyme replacement therapy (ERT) regimen for alpha-mannosidase knockout mice, a valid mouse model for the human disease. However, humoral immune responses against the injected recombinant human alpha-mannosidase (rhLAMAN) precluded long-term studies and chronic treatment.

METHODS: Here, we describe the generation of an immune-tolerant alpha-mannosidosis mouse model that allowed chronic injection of rhLAMAN by transgenic expression of a catalytically inactive variant of human LAMAN in the knockout background.

RESULTS: Chronic ERT of rhLAMAN revealed pronounced effects on primary substrate storage throughout the brain, normalization of lysosomal enzyme activities and morphology as well as a decrease in microglia activation. The positive effect of long-term ERT on neuronal lysosomal function was reflected by an improvement of cognitive deficits and exploratory activity. in vivo and in vitro uptake measurements indicate rapid clearance of rhLAMAN from circulation and a broad uptake into different cell types of the nervous system.

INTERPRETATION: Our data contribute to the understanding of neurological disorders treatment by demonstrating that lysosomal enzymes such as rhLAMAN can penetrate into the brain and is able to ameliorate neuropathology.

References

  1. J Pediatr. 1969 Sep;75(3):366-73 - PubMed
  2. Am J Hum Genet. 2001 Mar;68(3):711-22 - PubMed
  3. Hum Mol Genet. 2003 May 1;12(9):961-73 - PubMed
  4. J Inherit Metab Dis. 2013 Nov;36(6):1015-24 - PubMed
  5. J Neuropathol Exp Neurol. 1977 Sep-Oct;36(5):807-20 - PubMed
  6. J Neurosci Res. 2005 Nov 1;82(3):306-15 - PubMed
  7. Hum Mutat. 2012 Mar;33(3):511-20 - PubMed
  8. FASEB J. 2000 Feb;14(2):361-7 - PubMed
  9. Curr Opin Pediatr. 2011 Dec;23(6):588-93 - PubMed
  10. Hum Mol Genet. 2012 Jun 1;21(11):2599-609 - PubMed
  11. Acta Paediatr Scand. 1967;:Suppl 177:35-6 - PubMed
  12. FASEB J. 2008 Mar;22(3):659-61 - PubMed
  13. Mol Ther. 2009 Apr;17(4):600-6 - PubMed
  14. N Engl J Med. 2001 Jul 5;345(1):9-16 - PubMed
  15. Adv Anat Embryol Cell Biol. 1980;59:I-VI,1-62 - PubMed
  16. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17022-7 - PubMed
  17. Mol Genet Metab. 2012 Sep;107(1-2):213-21 - PubMed
  18. Am J Hum Genet. 1999 Jan;64(1):77-88 - PubMed
  19. Mol Genet Metab. 2005 Jul;85(3):181-9 - PubMed
  20. FASEB J. 1987 Dec;1(6):462-8 - PubMed
  21. Biochim Biophys Acta. 2009 Apr;1793(4):605-14 - PubMed
  22. Expert Opin Biol Ther. 2008 Jul;8(7):1003-9 - PubMed
  23. Mol Ther. 2008 Jul;16(7):1261-6 - PubMed
  24. Biochem J. 2004 Jul 15;381(Pt 2):537-46 - PubMed
  25. J Hum Genet. 2013 Nov;58(11):728-33 - PubMed
  26. Bone Marrow Transplant. 2012 Mar;47(3):352-9 - PubMed
  27. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2616-21 - PubMed
  28. Pediatr Res. 1999 Jun;45(6):838-44 - PubMed
  29. Mol Cell Biol. 2010 Jan;30(1):273-83 - PubMed
  30. Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14777-82 - PubMed
  31. Exp Neurol. 2011 Jul;230(1):123-30 - PubMed
  32. Mol Genet Metab. 2011 Jun;103(2):113-20 - PubMed
  33. Am J Hum Genet. 1977 Sep;29(5):448-54 - PubMed
  34. Mol Genet Metab. 2006 Sep-Oct;89(1-2):48-57 - PubMed
  35. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2205-10 - PubMed
  36. Hum Mol Genet. 1999 Aug;8(8):1365-72 - PubMed
  37. Hum Mol Genet. 2008 Nov 15;17(22):3437-45 - PubMed
  38. Am J Hum Genet. 1998 Oct;63(4):1015-24 - PubMed
  39. J Inherit Metab Dis. 2014 Jan;37(1):79-82 - PubMed
  40. Orphanet J Rare Dis. 2013 Jun 20;8:88 - PubMed
  41. Hum Mol Genet. 2004 Sep 15;13(18):1979-88 - PubMed
  42. Orphanet J Rare Dis. 2008 Jul 23;3:21 - PubMed
  43. Mol Genet Metab. 2008 Aug;94(4):469-75 - PubMed
  44. Transgenic Res. 2003 Apr;12(2):171-8 - PubMed
  45. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12873-8 - PubMed
  46. J Inherit Metab Dis. 2010 Oct;33(5):611-7 - PubMed
  47. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2970-4 - PubMed
  48. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):69-84 - PubMed
  49. Mol Genet Metab. 2014 Feb;111(2):116-22 - PubMed
  50. PLoS One. 2012;7(7):e40509 - PubMed
  51. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12658-63 - PubMed
  52. J Neuropathol Exp Neurol. 2011 Jan;70(1):83-94 - PubMed
  53. Pediatr Res. 2004 Jul;56(1):65-72 - PubMed
  54. Mol Med. 2007 Sep-Oct;13(9-10):471-9 - PubMed

Publication Types