Display options
Share it on

Nat Commun. 2016 Feb 23;7:10620. doi: 10.1038/ncomms10620.

Tailoring the chiral magnetic interaction between two individual atoms.

Nature communications

A A Khajetoorians, M Steinbrecher, M Ternes, M Bouhassoune, M dos Santos Dias, S Lounis, J Wiebe, R Wiesendanger

Affiliations

  1. Department of Physics, Hamburg University, 20355 Hamburg, Germany.
  2. Institute for Molecules and Materials, Radboud University, 6525AJ Nijmegen, The Netherlands.
  3. Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany.
  4. Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich &JARA, 52425 Jülich, Germany.

PMID: 26902332 PMCID: PMC4766390 DOI: 10.1038/ncomms10620

Abstract

Chiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii-Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii-Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets.

References

  1. Nature. 2006 Aug 17;442(7104):797-801 - PubMed
  2. Science. 2008 Apr 11;320(5873):190-4 - PubMed
  3. Nat Nanotechnol. 2015 Nov;10(11):958-64 - PubMed
  4. Science. 2014 May 30;344(6187):988-92 - PubMed
  5. Science. 2012 May 25;336(6084):1003-7 - PubMed
  6. Nat Mater. 2012 Apr 23;11(5):372-81 - PubMed
  7. Science. 2004 Oct 8;306(5694):242-7 - PubMed
  8. Nat Commun. 2013;4:2110 - PubMed
  9. Science. 2013 Aug 9;341(6146):636-9 - PubMed
  10. Nat Nanotechnol. 2013 Mar;8(3):152-6 - PubMed
  11. Nature. 2007 May 10;447(7141):190-3 - PubMed
  12. Chem Soc Rev. 2009 Mar;38(3):669-70 - PubMed
  13. Phys Rev Lett. 2012 May 18;108(20):207202 - PubMed
  14. Phys Rev Lett. 2012 May 11;108(19):197204 - PubMed
  15. Nat Commun. 2013;4:2671 - PubMed
  16. Science. 2010 Dec 17;330(6011):1648-51 - PubMed
  17. Science. 2003 May 16;300(5622):1130-3 - PubMed
  18. Phys Rev Lett. 2009 Sep 4;103(10):107203 - PubMed
  19. Phys Rev Lett. 2013 Oct 11;111(15):157204 - PubMed

Publication Types