Display options
Share it on

Front Plant Sci. 2016 Feb 10;7:89. doi: 10.3389/fpls.2016.00089. eCollection 2016.

Toward the Reconstitution of a Two-Enzyme Cascade for Resveratrol Synthesis on Potyvirus Particles.

Frontiers in plant science

Jane Besong-Ndika, Matti Wahlsten, Daniela Cardinale, Jan Pille, Jocelyne Walter, Thierry Michon, Kristiina Mäkinen

Affiliations

  1. Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland; UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d'Ornon, France.
  2. Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland.
  3. UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux Villenace d'Ornon, France.
  4. UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d'Ornon, France; Bio-Organic Chemistry, Radboud UniversityNijmegen, Netherlands.

PMID: 26904061 PMCID: PMC4748245 DOI: 10.3389/fpls.2016.00089

Abstract

The highly ordered protein backbone of virus particles makes them attractive candidates for use as enzyme nano-carriers (ENCs). We have previously developed a non-covalent and versatile approach for adhesion of enzymes to virus particles. This approach makes use of z33, a peptide derived from the B-domain of Staphylococcus aureus protein A, which binds to the Fc domain of many immunoglobulins. We have demonstrated that with specific antibodies addressed against the viral capsid proteins (CPs) an 87% coverage of z33-tagged proteins can be achieved on potyvirus particles. 4-coumarate coenzyme A ligase (4CL2) and stilbene synthase (STS) catalyze consecutive steps in the resveratrol synthetic pathway. In this study, these enzymes were modified to carry an N-terminal z33 peptide and a C-terminal 6xHis tag to obtain (z)4CL2(His) and (z)STS(His), respectively. A protein chimera, (z)4CL2::STS(His), with the same modifications was also generated from the genetic fusion of both mono-enzyme encoding genes. All z33 enzymes were biologically active after expression in Escherichia coli as revealed by LC-MS analysis to identify resveratrol and assembled readily into macromolecular complexes with Potato virus A particles and α-PVA CP antibodies. To test simultaneous immobilization-purification, we applied the double antibody sandwich - ELISA protocol to capture active z33-containg mono-enzymes and protein chimera directly from clarified soluble cell lysates onto the virus particle surface. These immobilized enzymes were able to synthesize resveratrol. We present here a bottom up approach to immobilize active enzymes onto virus-based ENCs and discuss the potential to utilize this method in the purification and configuration of nano-devices.

Keywords: antibodies; enzyme immobilization; enzyme nano-carriers; potyvirus; resveratrol; virus nanoparticles; z33-peptide

References

  1. J Am Chem Soc. 2006 Oct 11;128(40):13030-1 - PubMed
  2. Nat Nanotechnol. 2007 Oct;2(10):635-9 - PubMed
  3. Org Biomol Chem. 2007 Sep 21;5(18):2891-902 - PubMed
  4. Rapid Commun Mass Spectrom. 2007;21(24):4101-8 - PubMed
  5. Appl Environ Microbiol. 2006 Aug;72(8):5670-2 - PubMed
  6. PLoS One. 2014 Mar 24;9(3):e91932 - PubMed
  7. Virology. 2000 Apr 25;270(1):31-42 - PubMed
  8. ACS Synth Biol. 2013 Feb 15;2(2):102-10 - PubMed
  9. J Am Chem Soc. 2012 Mar 28;134(12):5516-9 - PubMed
  10. Sensors (Basel). 2012 Dec 04;12(12):16685-94 - PubMed
  11. Curr Opin Chem Biol. 2010 Dec;14(6):810-7 - PubMed
  12. Chem Soc Rev. 2013 Aug 7;42(15):6290-307 - PubMed
  13. Chemistry. 2009;15(5):1107-14 - PubMed
  14. J Biol Chem. 2000 Dec 15;275(50):39640-6 - PubMed
  15. J Am Chem Soc. 2011 Dec 28;133(51):20684-7 - PubMed
  16. Ann N Y Acad Sci. 2013 Jul;1290:37-51 - PubMed
  17. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5688-92 - PubMed
  18. Biotechnol Adv. 2015 Sep-Oct;33(5):435-56 - PubMed
  19. Biochem J. 2000 Aug 15;350 Pt 1:229-35 - PubMed
  20. Trends Biotechnol. 2012 Jul;30(7):369-76 - PubMed
  21. Nat Biotechnol. 2009 Aug;27(8):753-9 - PubMed
  22. Metab Eng. 2010 May;12(3):298-305 - PubMed
  23. Appl Environ Microbiol. 2011 May;77(10):3451-60 - PubMed
  24. Plant Physiol Biochem. 2008 Dec;46(12):1085-92 - PubMed
  25. Biomacromolecules. 2013 Dec 9;14(12):4351-9 - PubMed

Publication Types