Display options
Share it on

Front Plant Sci. 2016 Feb 12;7:139. doi: 10.3389/fpls.2016.00139. eCollection 2016.

Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic Study and their Expression under Salt Stress.

Frontiers in plant science

Yating Dong, Cong Li, Yi Zhang, Qiuling He, Muhammad K Daud, Jinhong Chen, Shuijin Zhu

Affiliations

  1. Department of Agronomy, Zhejiang University Hangzhou, China.
  2. Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology Kohat, Pakistan.

PMID: 26904090 PMCID: PMC4751282 DOI: 10.3389/fpls.2016.00139

Abstract

Glutathione S-transferases (GSTs) play versatile functions in multiple aspects of plant growth and development. A comprehensive genome-wide survey of this gene family in the genomes of G. raimondii and G. arboreum was carried out in this study. Based on phylogenetic analyses, the GST gene family of both two diploid cotton species could be divided into eight classes, and approximately all the GST genes within the same subfamily shared similar gene structure. Additionally, the gene structures between the orthologs were highly conserved. The chromosomal localization analyses revealed that GST genes were unevenly distributed across the genome in both G. raimondii and G. arboreum. Tandem duplication could be the major driver for the expansion of GST gene families. Meanwhile, the expression analysis for the selected 40 GST genes showed that they exhibited tissue-specific expression patterns and their expression were induced or repressed by salt stress. Those findings shed lights on the function and evolution of the GST gene family in Gossypium species.

Keywords: GST; cotton; gene family; phylogenetic analysis; salt stress

References

  1. Genetics. 1999 Apr;151(4):1531-45 - PubMed
  2. BMC Genomics. 2010 Jan 29;11:73 - PubMed
  3. J Mol Biol. 2001 May 18;308(5):949-62 - PubMed
  4. Plant Mol Biol. 2002 Jul;49(5):515-32 - PubMed
  5. Trends Plant Sci. 2000 May;5(5):193-8 - PubMed
  6. PLoS One. 2014 Jun 02;9(6):e98189 - PubMed
  7. Plant Physiol. 2013 Feb;161(2):773-86 - PubMed
  8. Mol Genet Genomics. 2004 Jun;271(5):511-21 - PubMed
  9. Nat Genet. 2014 Jun;46(6):567-72 - PubMed
  10. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 - PubMed
  11. J Plant Physiol. 2009 Nov 15;166(17):1878-91 - PubMed
  12. Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60 - PubMed
  13. Arabidopsis Book. 2010;8:e0131 - PubMed
  14. J Plant Physiol. 2013 Sep 15;170(14):1277-84 - PubMed
  15. Methods. 2001 Dec;25(4):402-8 - PubMed
  16. BMC Bioinformatics. 2004 Aug 19;5:113 - PubMed
  17. Biomol Eng. 2006 Sep;23(4):149-69 - PubMed
  18. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1187-92 - PubMed
  19. PLoS One. 2014 Apr 09;9(4):e94126 - PubMed
  20. Chem Res Toxicol. 1997 Jan;10(1):2-18 - PubMed
  21. Phytochemistry. 2010 Mar;71(4):338-50 - PubMed
  22. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  23. Genet Res (Camb). 2009 Aug;91(4):267-80 - PubMed
  24. Bioinformatics. 2015 Apr 15;31(8):1296-7 - PubMed
  25. PLoS One. 2014 Mar 24;9(3):e92900 - PubMed
  26. Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6 - PubMed
  27. Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8 - PubMed
  28. New Phytol. 2009 Aug;183(3):557-64 - PubMed
  29. Annu Rev Plant Biol. 2002;53:247-73 - PubMed
  30. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:127-158 - PubMed
  31. Plant Cell. 2009 Dec;21(12):3749-66 - PubMed
  32. Nat Genet. 2012 Oct;44(10):1098-103 - PubMed
  33. Ann Bot. 2013 Nov;112(7):1209-21 - PubMed
  34. Plant Cell Physiol. 2009 Apr;50(4):889-903 - PubMed
  35. Plant J. 2007 Jun;50(6):995-1006 - PubMed
  36. Plant Cell Physiol. 2014 Mar;55(3):570-9 - PubMed
  37. Plant Cell. 2004 Jul;16(7):1667-78 - PubMed
  38. Biotechniques. 2003 Feb;34(2):374-8 - PubMed
  39. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 - PubMed
  40. Biotechnol Lett. 2010 Aug;32(8):1173-9 - PubMed
  41. Plant Physiol. 2014 May 1;165(2):688-704 - PubMed
  42. Front Plant Sci. 2015 Sep 30;6:770 - PubMed
  43. Funct Integr Genomics. 2013 Jun;13(2):241-51 - PubMed
  44. EMBO Rep. 2009 Dec;10(12):1320-6 - PubMed
  45. Genome Res. 2006 Oct;16(10):1252-61 - PubMed
  46. Plant J. 2009 Apr;58(1):53-68 - PubMed
  47. Bioinformatics. 2009 Jun 1;25(11):1451-2 - PubMed
  48. FEBS Lett. 2000 Jan 21;466(1):107-11 - PubMed
  49. Biochem J. 2001 Nov 15;360(Pt 1):1-16 - PubMed
  50. Pest Manag Sci. 2006 Oct;62(10 ):927-32 - PubMed
  51. Plant Cell. 2001 Jun;13(6):1383-400 - PubMed
  52. DNA Res. 2011 Feb;18(1):1-16 - PubMed
  53. Genome Res. 2006 Apr;16(4):510-9 - PubMed
  54. Anal Biochem. 2007 Nov 1;370(1):1-16 - PubMed
  55. Curr Opin Plant Biol. 1998 Jun;1(3):258-66 - PubMed
  56. Funct Integr Genomics. 2012 Mar;12(1):157-72 - PubMed
  57. Plant Physiol Biochem. 2014 Apr;77:99-107 - PubMed
  58. Genome Biol. 2002;3(3):REVIEWS3004 - PubMed
  59. Plant Cell Rep. 2006 Sep;25(9):997-1005 - PubMed
  60. Nucleic Acids Res. 1999 Jan 1;27(1):297-300 - PubMed
  61. Electrophoresis. 1994 Mar-Apr;15(3-4):529-39 - PubMed
  62. Plant Mol Biol. 2009 Jun;70(3):341-57 - PubMed
  63. Nature. 2012 Dec 20;492(7429):423-7 - PubMed
  64. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  65. Curr Opin Struct Biol. 2005 Dec;15(6):716-23 - PubMed
  66. BMC Plant Biol. 2014 Feb 03;14:39 - PubMed
  67. Protein Sci. 2004 May;13(5):1402-6 - PubMed

Publication Types