Display options
Share it on

J Chem Phys. 2016 Feb 07;144(5):054702. doi: 10.1063/1.4940966.

Surface tension of the two center Lennard-Jones plus point dipole fluid.

The Journal of chemical physics

Stephan Werth, Martin Horsch, Hans Hasse

Affiliations

  1. Laboratory of Engineering Thermodynamics, Department of Mechanical and Process Engineering, University of Kaiserslautern, Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany.

PMID: 26851929 DOI: 10.1063/1.4940966

Abstract

Molecular dynamics simulations are used for systematically studying the surface tension of the two center Lennard-Jones plus point dipole (2CLJD) model fluid. In a dimensionless representation, this model fluid has two parameters describing the elongation and the dipole moment. These parameters were varied in the entire range relevant for describing real fluids resulting in a grid of 38 individual models. For each model, the surface tension was determined at temperatures between 60% and 90% of the critical temperature. For completeness, the vapor pressure and the saturated densities were also determined. The latter results agree well with the literature data, whereas for the surface tension, only few data were previously available. From the present results, an empirical correlation for the surface tension of the 2CLJD model as a function of the model parameters is developed. The correlation is used to predict the surface tension of 46 2CLJD molecular models from the literature, which were adjusted to bulk properties, but not to interfacial properties. The results are compared to the experimental data. The molecular models overestimate the surface tension, and deviations between the predictions and experimental data are below 12% on average.

Publication Types